Chemical synthesis of bile acid acyl-adenylates and formation by a rat liver microsomal fraction
摘要:
In mammals, unconjugated bile acids formed in the intestine by bacterial deconjugation are reconjugated (N-acylamidated) with taurine or glycine during hepatocyte transport. Activation of the carboxyl group of bile acids to form acyl-adenylates is a likely key intermediate step in bile acid N-acylamidation. To gain more insight into the process of bile acid adenylate formation, we first synthesized the adenylates of five common, natural bile acids (cholic, deoxycholic, chenodeoxycholic, ursodeoxycholic, and lithocholic acid), and confirmed their structure by proton NMR. We then investigated adenylate formation by subcellular fractions of rat liver (microsomes, mitochondria, cytsol) using a newly developed LC method for quantifying adenylate formation. The highest activity was observed in the microsomal fraction. The reaction required Mg2+ and its optimum pH was about pH 7.0. In term of maximum velocity (V x) and the Michaelis constant (K), the catalytic efficiency of the enzyme under the conditions used was highest with cholic acid of the bile acids tested. The formation of cholyl-adenylate was strongly inhibited by lithocholic and deoxycholic acid, as well as by palmitic acid; ibuprofen and valproic acid were weak inhibitors. In cholestatic disease, such adenylate formation might lead to subsequent bile acid conjugation with glutathione or proteins. (C) 2009 Elsevier Inc. All rights reserved.
Following the pioneer work of Bruno De Finetti [12], conditional probability spaces (allowing for conditioning with events of measure zero) have been studied since (at least) the 1950's. Perhaps the most salient axiomatizations are Karl Popper's in [31], and Alfred Renyi's in [33]. Nonstandard probability space [34] are a well known alternative to this approach. Vann McGee proposed in [30] a result relating both approaches by showing that the standard values of infinitesimal probability functions are representable as Popper functions, and that every Popper function is representable in terms of the standard real values of some infinitesimal measure. Our main goal in this article is to study the constraints on (qualitative and probabilistic) change imposed by an extended version of McGee's result. We focus on an extension capable of allowing for iterated changes of view. Such extension, we argue, seems to be needed in almost all considered applications. Since most of the available axiomatizations stipulated (definitionally) important constraints on iterated change, we propose a non-question-begging framework, Iterative Probability Systems (IPS) and we show that every Popper function can be regarded as a Bayesian IPS. A generalized version of McGee's result is then proved and several of its consequences considered. In particular we note that our proof requires the imposition of Cumulativity, i.e. the principle that a proposition that is accepted at any stage of an iterative process of acceptance will continue to be accepted at any later stage. The plausibility and range of applicability of Cumulativity is then studied. In particular we appeal to a method for defining belief from conditional probability (first proposed in [42] and then slightly modified in [6] and [3]) in order to characterize the notion of qualitative change induced by Cumulative models of probability kinematics. The resulting cumulative notion is then compared with existing axiomatizations of belief change and probabilistic supposition. We also consider applications in the probabilistic accounts of conditionals [1] and [30].
[EN] STABLE INDOLE-3-PROPIONATE SALTS OF S-ADENOSYL-L-METHIONINE<br/>[FR] SELS D'INDOLE-3-PROPIONATE STABLES DE LA S-ADÉNOSYL-L-MÉTHIONINE
申请人:HEBERT SAM E LLC
公开号:WO2014113609A1
公开(公告)日:2014-07-24
Stable indole-3-propionic acid salts of S-adenosyl-L-methionine, or a pharmaceutically acceptable salt thereof, are disclosed, as well as pharmaceutical compositions comprising the indole-3-propionic acid salts, methods of using the indole-3-propionic acid salts and processes for making same.
Provided is a method for quantifying soluble LR11 in a biological sample such as serum by an immunological means conveniently and accurately without the need of carrying out any complicated separation manipulation. An immunological quantification method for soluble LR11 in a sample derived from a mammal, including a step of treating the sample with at least one surfactant selected from a group consisting of a polyoxyalkylene alkyl ether, a polyoxyalkylene alkyl phenyl ether, an alkyl glycoside, an alkylthio glycoside, an acyl-N-methylglucamide and a salt of cholic acid.
Methods and related compositions for reduction of fat and skin tightening
申请人:THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
公开号:US10058561B2
公开(公告)日:2018-08-28
Compositions and methods useful in the reduction of localized fat deposits and tightening of loose skin in subjects in need thereof using pharmacologically active detergents are disclosed. The pharmacologically active detergent compositions can additionally include anti-inflammatory agents, analgesics, dispersion or anti-dispersion agents and pharmaceutically acceptable excipients. The pharmacologically active detergent compositions are useful for treating localized accumulations of fat including, for example, lower eyelid fat herniation, lipodystrophy and fat deposits associated with cellulite and do not require surgical procedures such as liposuction.
Double metal cyanide catalysts for preparing polyether polyols
申请人:——
公开号:US20020198099A1
公开(公告)日:2002-12-26
The invention is directed to a double-metal cyanide catalyst for the preparation of a polyether polyol by the polyaddition of an alkylene oxideon to a starter compound containing active hydrogen atoms, wherein the DMC catalyst comprises a) at least one double-metal cyanide compound; b) at least one organic complexing ligand; and c) two different complexing components.
本发明涉及一种氰化双金属催化剂,用于将环氧亚烷基与含有活泼氢原子的起始化合物进行加成反应制备聚醚多元醇,其中 DMC 催化剂包括 a) 至少一种氰化双金属化合物;b) 至少一种有机络合配体;以及 c) 两种不同的络合组分。
Use of tri(n-butyl) phosphate at low pH in solutions of biologically active proteins for enhanced virucidal activity