A new class of organic dyes based on acenaphthopyrazine for dye-sensitized solar cells
摘要:
A new class of organic dyes based on acenaphthopyrazine derivatives, containing pyrazine group as the electron acceptor and o-dicarboxyl acids as the anchoring groups were designed and synthesized for application in dye-sensitized solar cells (DSCs). These dyes have short synthesis routes and are easily adsorbed on the surface of TiO2. Under illumination of simulated AM1.5 solar light (100 mW cm(-2)), a total solar energy conversion efficiency (eta) of 4.04% was obtained for the 3-(diphenylamino)acenaphtho[1,2-b] pyrazine-8,9-dicarboxylic acid (AP-1) in the preliminary tests, in comparison with the conventional N719 dye (eta=7.05%) under the same conditions. (C) 2010 Elsevier B.V. All rights reserved.
A new class of organic dyes based on acenaphthopyrazine for dye-sensitized solar cells
摘要:
A new class of organic dyes based on acenaphthopyrazine derivatives, containing pyrazine group as the electron acceptor and o-dicarboxyl acids as the anchoring groups were designed and synthesized for application in dye-sensitized solar cells (DSCs). These dyes have short synthesis routes and are easily adsorbed on the surface of TiO2. Under illumination of simulated AM1.5 solar light (100 mW cm(-2)), a total solar energy conversion efficiency (eta) of 4.04% was obtained for the 3-(diphenylamino)acenaphtho[1,2-b] pyrazine-8,9-dicarboxylic acid (AP-1) in the preliminary tests, in comparison with the conventional N719 dye (eta=7.05%) under the same conditions. (C) 2010 Elsevier B.V. All rights reserved.
A new class of organic dyes based on acenaphthopyrazine for dye-sensitized solar cells
作者:Zhixia Kong、Huizhi Zhou、Jingnan Cui、Tingli Ma、Xichuan Yang、Licheng Sun
DOI:10.1016/j.jphotochem.2010.05.017
日期:2010.6
A new class of organic dyes based on acenaphthopyrazine derivatives, containing pyrazine group as the electron acceptor and o-dicarboxyl acids as the anchoring groups were designed and synthesized for application in dye-sensitized solar cells (DSCs). These dyes have short synthesis routes and are easily adsorbed on the surface of TiO2. Under illumination of simulated AM1.5 solar light (100 mW cm(-2)), a total solar energy conversion efficiency (eta) of 4.04% was obtained for the 3-(diphenylamino)acenaphtho[1,2-b] pyrazine-8,9-dicarboxylic acid (AP-1) in the preliminary tests, in comparison with the conventional N719 dye (eta=7.05%) under the same conditions. (C) 2010 Elsevier B.V. All rights reserved.