Achiral Counterion Control of Enantioselectivity in a Brønsted Acid-Catalyzed Iodolactonization
作者:Mark C. Dobish、Jeffrey N. Johnston
DOI:10.1021/ja301858r
日期:2012.4.11
Highly enantioselective halolactonizations have been developed that employ a chiral proton catalyst-N-iodosuccinimide (NIS) reagent system in which the Brønsted acid is used at catalyst loadings as low as 1 mol %. An approach that modulates the achiral counterion (equimolar to the neutral chiral ligand-proton complex present at low catalyst loadings) to optimize the enantioselection is documented for
Catalytic Asymmetric Iodocyclization of<i>N-</i>Tosyl Alkenamides using Aminoiminophenoxy Copper Carboxylate: A Concise Synthesis of Chiral 8-Oxa-6-Azabicyclo[3.2.1]octanes
A newly developed aminoiminophenoxycoppercarboxylate (L7‐Cu‐OAc)‐catalyzed asymmetriciodocyclization of N‐Tosyl alkenamides gave O‐cyclized products in good yields with high enantioselectivity. From the O‐cyclized products, a skeletal transformation was succeeded in the synthesis of biologically important chiral 8‐oxa‐6‐azabicyclo[3.2.1]octanes. DFT calculations suggested that the acetoxy anion
A 3,3'-bis(aminoimino)BINOL ligand was newly designed and synthesized for the formation of a trinuclear Zn complex upon reaction with Zn(OAc)2. Using the harmony of the tri-zinc atoms, 1 mol% Zn3(OAc)4-3,3'-bis(aminoimino)binaphthoxide catalyzed asymmetriciodolactonization in up to 99.9% ee.
The intramolecular zinc bis-proline-phenol complex 2a was found to promote enantioselective iodolactonization reactions of both electron-rich and electron-poor 5-aryl-5-hexenoic acids affording delta-iodolactones in good chemical yields with up to 82% enantiomeric excess. The reactions were found to be insensitive to air and moisture, providing an experimentally simple protocol for synthetically useful compounds. (C) 2013 Elsevier Ltd. All rights reserved.
The Role of Ni-Carboxylate During Catalytic Asymmetric Iodolactonization Using PyBidine-Ni(OAc)2
作者:Takayoshi Arai、Satoshi Kajikawa、Eri Matsumura
DOI:10.1055/s-0033-1339676
日期:——
The combination of a PyBidine-Ni(OAc)(2) complex with a catalytic amount of iodine efficiently catalyzed asymmetric iodolactonization to generate chiral iodolactones with up to 89% enantiomeric excess. The formation of an intermediate Ni-carboxylate species from the alkenyl carboxylic acid is a key role in promoting the iodolactonization.