Novel triple reuptake inhibitors with low risk of CAD associated liabilities: Design, synthesis and biological activities of 4-[(1S)-1-(3,4-dichlorophenyl)-2-methoxyethyl]piperidine and related compounds
摘要:
A novel triple reuptake inhibitor with low potential of liabilities associated with cationic amphiphilic drug (CAD) was identified following an analysis of existing drugs. Low molecular weight (MW < ca. 300), low aromatic ring count (number = 1) and reduced lipophilicity (ClogP < 3.5) were hypothesized to be key factors to avoid the CAD associated liabilities (CYP2D6 inhibition, hERG inhibition and phospholipidosis). Based on the hypothesis, a series of piperidine compounds was designed with consideration of the common characteristic features of CNS drugs. Optimization of the side chain by adjusting overall lipophilicity suggested that incorporation of a methoxymethyl group could provide compounds with a balance of both potent reuptake inhibition and low liability potential. Compound (S)-3a showed a potent antidepressant-like effect in the mice tail suspension test (MED = 10 mg/kg, p.o.), proportional monoamine transporter occupancies and enhancement of monoamine concentrations in mouse prefrontal cortex. (C) 2013 Elsevier Ltd. All rights reserved.
Novel triple reuptake inhibitors with low risk of CAD associated liabilities: Design, synthesis and biological activities of 4-[(1S)-1-(3,4-dichlorophenyl)-2-methoxyethyl]piperidine and related compounds
A novel triple reuptake inhibitor with low potential of liabilities associated with cationic amphiphilic drug (CAD) was identified following an analysis of existing drugs. Low molecular weight (MW < ca. 300), low aromatic ring count (number = 1) and reduced lipophilicity (ClogP < 3.5) were hypothesized to be key factors to avoid the CAD associated liabilities (CYP2D6 inhibition, hERG inhibition and phospholipidosis). Based on the hypothesis, a series of piperidine compounds was designed with consideration of the common characteristic features of CNS drugs. Optimization of the side chain by adjusting overall lipophilicity suggested that incorporation of a methoxymethyl group could provide compounds with a balance of both potent reuptake inhibition and low liability potential. Compound (S)-3a showed a potent antidepressant-like effect in the mice tail suspension test (MED = 10 mg/kg, p.o.), proportional monoamine transporter occupancies and enhancement of monoamine concentrations in mouse prefrontal cortex. (C) 2013 Elsevier Ltd. All rights reserved.