摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

(2RS,3SR)-1-cyclohexyl-3-hydroxy-2-methyl-3-phenylpropan-1-one | 72449-22-0

中文名称
——
中文别名
——
英文名称
(2RS,3SR)-1-cyclohexyl-3-hydroxy-2-methyl-3-phenylpropan-1-one
英文别名
(2S,3R)-1-cyclohexyl-3-hydroxy-2-methyl-3-phenylpropan-1-one
(2RS,3SR)-1-cyclohexyl-3-hydroxy-2-methyl-3-phenylpropan-1-one化学式
CAS
72449-22-0;72449-25-3
化学式
C16H22O2
mdl
——
分子量
246.349
InChiKey
ZWONZLAZKFSNNX-SWLSCSKDSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 沸点:
    386.5±22.0 °C(Predicted)
  • 密度:
    1.070±0.06 g/cm3(Predicted)

计算性质

  • 辛醇/水分配系数(LogP):
    3.4
  • 重原子数:
    18
  • 可旋转键数:
    4
  • 环数:
    2.0
  • sp3杂化的碳原子比例:
    0.56
  • 拓扑面积:
    37.3
  • 氢给体数:
    1
  • 氢受体数:
    2

反应信息

  • 作为产物:
    描述:
    (1E)-1-cyclohexyl-1-propenyl dicyclopentylborinate 、 苯甲醛 以88%的产率得到
    参考文献:
    名称:
    HORN D. E. VAN; MASAMUNE S., TETRAHEDRON LETT., 1979, NO 24, 2229-2232
    摘要:
    DOI:
点击查看最新优质反应信息

文献信息

  • Titanium Tetraiodide-Promoted Reductive Enolate Formation of α-Tosyloxy Ketone Derivatives and Aldol Reaction with Aldehydes
    作者:Iwao Hachiya、Takao Inagaki、Yasuhisa Ishihara、Makoto Shimizu
    DOI:10.1246/bcsj.20100363
    日期:2011.4.15
    Titanium tetraiodide-promoted reductive enolate formation from α-tosyloxy ketone derivatives and subsequent aldol reaction of the resulting enolates with aldehydes gave β-hydroxy ketones.
    化物促进的还原性烯醇盐形成源自α-托烯醇酮衍生物,随后与醛的烷醇反应生成β-羟基酮。
  • Enolboration. 5. An examination of the effects of amine, solvent, and other reaction parameters on the stereoselective enolboration of ketones with various Chx2BX reagents. An optimized procedure to achieve the stereoselective synthesis of E enol borinates from representative ketones using Chx2BCl/Et3N
    作者:Kumaraperumal Ganesan、Herbert C. Brown
    DOI:10.1021/jo00077a046
    日期:1993.12
    The effects of amine, solvent, concentration, temperature and other reaction parameters in controlling the enolate geometry have been systematically investigated in the present study. A B-11 NMR study of the interaction of representative tertiary amines of variable steric requirements with dicyclohexylchloroborane, ChX2BCl, suggests that the smaller amines coordinate strongly with Chx2BCl, while the more bulky amines do not. These amines have also been examined for the enolboration of diethyl ketone with ChX2BCI, in order to understand the effect of the steric requirements of the amine on the enolate geometry. While the smaller amines favor formation of E enol borinate, the more hindered amines favor formation of the isomeric Z enol borinate. Triethylamine and N,N-diisopropylethylamine, the best amines selected in terms of yield and selectivity, have also been compared for the enolboration of two model ketones, diethyl ketone and propiophenone, using various Chx2BX reagents (X = Cl, Br, I, OMs, and OTf) to understand their effect with different ketones and reagents. Detailed studies for the enolboration of diethyl ketone with ChX2BCI/Et3N, with the hope of understanding the various effects on the enolate geometry and of improving the E enolate selectivity, suggest that formation of the E enolates are highly favored in nonpolar solvents and in dilute medium, whereas the corresponding Z enolates are more favored in polar solvents and in relatively concentrated medium. The other reaction parameters, such as the enolization and the aldolization temperatures, and the order and the rate of addition of the various substrates, have essentially no influence on the stereochemistry. However, the aldolization at -78-degrees-C for 2 h without allowing the reaction mixture to warm to room temperature improves the anti aldol selectivity. An understanding of these various effects in controlling the stereochemistry of the enolboration and the achievement of the selective synthesis of E enol borinates from representative ketones using Chx2-BCl/Et3N under optimized reaction conditions are emphasized in this exploratory study.
查看更多

同类化合物

(βS)-β-氨基-4-(4-羟基苯氧基)-3,5-二碘苯甲丙醇 (S,S)-邻甲苯基-DIPAMP (S)-(-)-7'-〔4(S)-(苄基)恶唑-2-基]-7-二(3,5-二-叔丁基苯基)膦基-2,2',3,3'-四氢-1,1-螺二氢茚 (S)-盐酸沙丁胺醇 (S)-3-(叔丁基)-4-(2,6-二甲氧基苯基)-2,3-二氢苯并[d][1,3]氧磷杂环戊二烯 (S)-2,2'-双[双(3,5-三氟甲基苯基)膦基]-4,4',6,6'-四甲氧基联苯 (S)-1-[3,5-双(三氟甲基)苯基]-3-[1-(二甲基氨基)-3-甲基丁烷-2-基]硫脲 (R)富马酸托特罗定 (R)-(-)-盐酸尼古地平 (R)-(-)-4,12-双(二苯基膦基)[2.2]对环芳烷(1,5环辛二烯)铑(I)四氟硼酸盐 (R)-(+)-7-双(3,5-二叔丁基苯基)膦基7''-[((6-甲基吡啶-2-基甲基)氨基]-2,2'',3,3''-四氢-1,1''-螺双茚满 (R)-(+)-7-双(3,5-二叔丁基苯基)膦基7''-[(4-叔丁基吡啶-2-基甲基)氨基]-2,2'',3,3''-四氢-1,1''-螺双茚满 (R)-(+)-7-双(3,5-二叔丁基苯基)膦基7''-[(3-甲基吡啶-2-基甲基)氨基]-2,2'',3,3''-四氢-1,1''-螺双茚满 (R)-(+)-4,7-双(3,5-二-叔丁基苯基)膦基-7“-[(吡啶-2-基甲基)氨基]-2,2”,3,3'-四氢1,1'-螺二茚满 (R)-3-(叔丁基)-4-(2,6-二苯氧基苯基)-2,3-二氢苯并[d][1,3]氧杂磷杂环戊烯 (R)-2-[((二苯基膦基)甲基]吡咯烷 (R)-1-[3,5-双(三氟甲基)苯基]-3-[1-(二甲基氨基)-3-甲基丁烷-2-基]硫脲 (N-(4-甲氧基苯基)-N-甲基-3-(1-哌啶基)丙-2-烯酰胺) (5-溴-2-羟基苯基)-4-氯苯甲酮 (5-溴-2-氯苯基)(4-羟基苯基)甲酮 (5-氧代-3-苯基-2,5-二氢-1,2,3,4-oxatriazol-3-鎓) (4S,5R)-4-甲基-5-苯基-1,2,3-氧代噻唑烷-2,2-二氧化物-3-羧酸叔丁酯 (4S,4''S)-2,2''-亚环戊基双[4,5-二氢-4-(苯甲基)恶唑] (4-溴苯基)-[2-氟-4-[6-[甲基(丙-2-烯基)氨基]己氧基]苯基]甲酮 (4-丁氧基苯甲基)三苯基溴化磷 (3aR,8aR)-(-)-4,4,8,8-四(3,5-二甲基苯基)四氢-2,2-二甲基-6-苯基-1,3-二氧戊环[4,5-e]二恶唑磷 (3aR,6aS)-5-氧代六氢环戊基[c]吡咯-2(1H)-羧酸酯 (2Z)-3-[[(4-氯苯基)氨基]-2-氰基丙烯酸乙酯 (2S,3S,5S)-5-(叔丁氧基甲酰氨基)-2-(N-5-噻唑基-甲氧羰基)氨基-1,6-二苯基-3-羟基己烷 (2S,2''S,3S,3''S)-3,3''-二叔丁基-4,4''-双(2,6-二甲氧基苯基)-2,2'',3,3''-四氢-2,2''-联苯并[d][1,3]氧杂磷杂戊环 (2S)-(-)-2-{[[[[3,5-双(氟代甲基)苯基]氨基]硫代甲基]氨基}-N-(二苯基甲基)-N,3,3-三甲基丁酰胺 (2S)-2-[[[[[((1S,2S)-2-氨基环己基]氨基]硫代甲基]氨基]-N-(二苯甲基)-N,3,3-三甲基丁酰胺 (2S)-2-[[[[[[((1R,2R)-2-氨基环己基]氨基]硫代甲基]氨基]-N-(二苯甲基)-N,3,3-三甲基丁酰胺 (2-硝基苯基)磷酸三酰胺 (2,6-二氯苯基)乙酰氯 (2,3-二甲氧基-5-甲基苯基)硼酸 (1S,2S,3S,5S)-5-叠氮基-3-(苯基甲氧基)-2-[(苯基甲氧基)甲基]环戊醇 (1S,2S,3R,5R)-2-(苄氧基)甲基-6-氧杂双环[3.1.0]己-3-醇 (1-(4-氟苯基)环丙基)甲胺盐酸盐 (1-(3-溴苯基)环丁基)甲胺盐酸盐 (1-(2-氯苯基)环丁基)甲胺盐酸盐 (1-(2-氟苯基)环丙基)甲胺盐酸盐 (1-(2,6-二氟苯基)环丙基)甲胺盐酸盐 (-)-去甲基西布曲明 龙蒿油 龙胆酸钠 龙胆酸叔丁酯 龙胆酸 龙胆紫-d6 龙胆紫