Tandem Sonogashira-Hagihara Coupling/Cycloisomerization Reactions of Ethynylboronic Acid MIDA Ester to Afford 2-Heterocyclic Boronic Acid MIDA Esters: A Concise Route to Benzofurans, Indoles, Furopyridines and Pyrrolopyridines
摘要:
A one-pot process that provides direct access to 2-heterocyclic MIDA (N-methyliminodiacetic acid) boronates has been developed. The reaction of 2-iodophenols or 2-iodoanilines with ethynylboronic acid MIDA ester readily afforded 2-substituted heterocyclic compounds. Amidine and phosphazene bases, especially TMG (1,1,3,3-tetramethylguanidine) assumed an important role in the tandem Sonogashira-Hagihara coupling/cycloisomerization reactions.
Tandem Sonogashira-Hagihara Coupling/Cycloisomerization Reactions of Ethynylboronic Acid MIDA Ester to Afford 2-Heterocyclic Boronic Acid MIDA Esters: A Concise Route to Benzofurans, Indoles, Furopyridines and Pyrrolopyridines
摘要:
A one-pot process that provides direct access to 2-heterocyclic MIDA (N-methyliminodiacetic acid) boronates has been developed. The reaction of 2-iodophenols or 2-iodoanilines with ethynylboronic acid MIDA ester readily afforded 2-substituted heterocyclic compounds. Amidine and phosphazene bases, especially TMG (1,1,3,3-tetramethylguanidine) assumed an important role in the tandem Sonogashira-Hagihara coupling/cycloisomerization reactions.
Tandem Sonogashira-Hagihara Coupling/Cycloisomerization Reactions of Ethynylboronic Acid MIDA Ester to Afford 2-Heterocyclic Boronic Acid MIDA Esters: A Concise Route to Benzofurans, Indoles, Furopyridines and Pyrrolopyridines
作者:Yohji Sakurai
DOI:10.3987/com-17-13723
日期:——
A one-pot process that provides direct access to 2-heterocyclic MIDA (N-methyliminodiacetic acid) boronates has been developed. The reaction of 2-iodophenols or 2-iodoanilines with ethynylboronic acid MIDA ester readily afforded 2-substituted heterocyclic compounds. Amidine and phosphazene bases, especially TMG (1,1,3,3-tetramethylguanidine) assumed an important role in the tandem Sonogashira-Hagihara coupling/cycloisomerization reactions.