A series of suberoylanilide hydroxamic acid (SAHA)-based non-hydroxamates was designed, synthesized, and evaluated for their histone deacetylase (HDAC) inhibitory activity. Among these, methyl sulfoxide 15 inhibited HDACs in enzyme assays and caused hyperacetylation of histone H4 while not inducing the accumulation of acetylated alpha-tubulin in HCT116 cells. (c) 2005 Elsevier Ltd. All rights reserved.
Thiol-based SAHA analogues as potent histone deacetylase inhibitors
In order to find novel nonhydroxamate histone deacetylase (HDAC) inhibitors, a series of thiol-based compounds modeled after suberoylanilide hydroxamic acid (SAHA) was synthesized, and their inhibitory effect on HDACs was evaluated. Compound 6, in which the hydroxamic acid of SAHA was replaced by a thiol, was found to be as potent as SAHA, and optimization of this series led to the identification of HDAC inhibitors more potent than SAHA. (C) 2004 Elsevier Ltd. All rights reserved.