In this report, we describe design, synthesis, evaluation and molecular dynamics simulations of synthetic multifunctional pores with Ï-acidic naphthalenediimide clamps. Experimental evidence is provided for the formation of unstable but inert, heterogeneous and acid-insensitive dynamic tetrameric pores that are sensitive to base and ionic strength. Blockage experiments reveal that the introduction of aromatic electron donorâacceptor interactions provides access to the selective recognition of Ï-basic intercalators within the pore. This breakthrough is important for the application of synthetic pores as multianalyte sensors.
Herein, we describe the design, synthesis, structure, and function of synthetic, supramolecular beta-barrel models. Assembly of octi(p-phenylene)s with complementary -Lys-Leu-Lys-NH2 and Glu-Leu-Glu-NH2 side chains yielded water-soluble rigid-rod beta-barrels of precise length and with flexible diameter. A hydrophobic interior was evidenced by guest encapsulation. Host-guest complexes with planarized, monomeric beta-carotene within tetrameric rigid-rod beta-barrels, and disc micellar astaxanthin J-aggregates surrounded by about dodecameric rigid-rod "bicycle tires" were prepared from mixed micelles by dialytic detergent removal. The significance of these findings for future bioorganic chemistry in confined, intratoroidal space is discussed in comparison with pertinent biological examples.