Rh(I)-Catalyzed [(3 + 2) + 1] Cycloaddition of 1-Yne/Ene-vinylcyclopropanes and CO: Homologous Pauson−Khand Reaction and Total Synthesis of (±)-α-Agarofuran
摘要:
A novel Rh(I)-catalyzed [(3 + 2) + 1] cycloaddition, which can be regarded as a homologous Pauson-Khand reaction, was developed to synthesize bicyclic cyclohexenones and cyclohexanones, enabling a new approach for synthesis of six-membered carbocycles ubiquitously found in natural products and pharmaceutics. The significance of the Rh-catalyzed [(3 + 2) + 1] cycloaddition has been demonstrated by the total synthesis of a furanoid sesquiterpene natural product, a-agarofuran, in which the bicyclic skeleton was constructed by the [(3 + 2) + 1] reaction of 1-yne-VCP and CO.
Rh(I)-Catalyzed [(3 + 2) + 1] Cycloaddition of 1-Yne/Ene-vinylcyclopropanes and CO: Homologous Pauson−Khand Reaction and Total Synthesis of (±)-α-Agarofuran
摘要:
A novel Rh(I)-catalyzed [(3 + 2) + 1] cycloaddition, which can be regarded as a homologous Pauson-Khand reaction, was developed to synthesize bicyclic cyclohexenones and cyclohexanones, enabling a new approach for synthesis of six-membered carbocycles ubiquitously found in natural products and pharmaceutics. The significance of the Rh-catalyzed [(3 + 2) + 1] cycloaddition has been demonstrated by the total synthesis of a furanoid sesquiterpene natural product, a-agarofuran, in which the bicyclic skeleton was constructed by the [(3 + 2) + 1] reaction of 1-yne-VCP and CO.
Asymmetric Rh(I)-Catalyzed Intramolecular [3 + 2] Cycloaddition of 1-Yne-vinylcyclopropanes for Bicyclo[3.3.0] Compounds with a Chiral Quaternary Carbon Stereocenter and Density Functional Theory Study of the Origins of Enantioselectivity
作者:Mu Lin、Guan-Yu Kang、Yi-An Guo、Zhi-Xiang Yu
DOI:10.1021/ja2082119
日期:2012.1.11
A highly enantioselective Rh(I)-catalyzed intramolecular [3 + 2] cycloaddition of 1-yne-VCPs to bicyclo[3.3.0] compounds with an all-carbon chiral quaternary stereocenter at the bridgehead carbon was developed. DFT calculations of the energy surface of the catalytic cycle (complexation, cyclopropane cleavage, alkyne insertion, and reductive elimination) of the asymmetric [3 + 2] cycloaddition reaction