Linker-Directed Vertex Desymmetrization for the Production of Coordination Polymers with High Porosity
摘要:
Five non-interpenetrated microporous coordination polymers (MCPs) are derived by vertex desymmetrization using linkers with symmetry inequivalent coordinating groups, and these MCPs include properties such as rare metal clusters, new network topologies, and supramolecular isomerism. Gas sorption in polymorphic frameworks, UMCM-152 and UMCM-153 (based upon a copper-coordinated tetracarboxylated triphenylbenzene linker), reveals nearly identical properties with BET surface areas in the range of 3300-3500 m(2)/g and excess hydrogen uptake of 5.7 and 5.8 wt % at 77 K. In contrast, adsorption of organosulfur compounds dibenzothiophene (DBT) and 4,6-dimethyldibenzothiophene (DMDBT) shows remarkably different capacities, providing direct evidence that liquid-phase adsorption is not solely dependent on surface area or linker/metal cluster identity. Structural features present in MCPs derived from these reduced symmetry linkers include the presence of more than one type of Cu-paddlewheel in a structure derived from a terphenyl tricarboxylate (UMCM-151) and a three-bladed zinc paddlewheel metal cluster in an MCP derived from a pentacarboxylated triphenylbenzene linker (UMCM-154).
Linker-Directed Vertex Desymmetrization for the Production of Coordination Polymers with High Porosity
摘要:
Five non-interpenetrated microporous coordination polymers (MCPs) are derived by vertex desymmetrization using linkers with symmetry inequivalent coordinating groups, and these MCPs include properties such as rare metal clusters, new network topologies, and supramolecular isomerism. Gas sorption in polymorphic frameworks, UMCM-152 and UMCM-153 (based upon a copper-coordinated tetracarboxylated triphenylbenzene linker), reveals nearly identical properties with BET surface areas in the range of 3300-3500 m(2)/g and excess hydrogen uptake of 5.7 and 5.8 wt % at 77 K. In contrast, adsorption of organosulfur compounds dibenzothiophene (DBT) and 4,6-dimethyldibenzothiophene (DMDBT) shows remarkably different capacities, providing direct evidence that liquid-phase adsorption is not solely dependent on surface area or linker/metal cluster identity. Structural features present in MCPs derived from these reduced symmetry linkers include the presence of more than one type of Cu-paddlewheel in a structure derived from a terphenyl tricarboxylate (UMCM-151) and a three-bladed zinc paddlewheel metal cluster in an MCP derived from a pentacarboxylated triphenylbenzene linker (UMCM-154).
PHOTOLUMINESCENCE-BASED DETECTION OF ACID GASES VIA RARE EARTH METAL-ORGANIC FRAMEWORKS
申请人:National Technology & Engineering Solutions of Sandia, LLC
公开号:US20210231628A1
公开(公告)日:2021-07-29
The present invention relates to a metal-organic framework composition, as well as constructs and methods thereof. In one particular example, the composition is employed to detect the presence of an acid gas.
Tunable metal-organic framework compositions and methods thereof
申请人:National Technology & Engineering Solutions of Sandia, LLC
公开号:US11007516B1
公开(公告)日:2021-05-18
The present invention relates to a metal-organic framework composition, as well as constructs and methods thereof. In one particular example, the composition provides a platform having an emission signal in the deep red to near-infrared (NIR) region.