摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

1,1-diethoxy-4-phenylbutan-2-one | 96952-94-2

中文名称
——
中文别名
——
英文名称
1,1-diethoxy-4-phenylbutan-2-one
英文别名
1,1-Diaethoxy-4-phenyl-butanon-(2);δ.δ-Diaethoxy-γ-oxo-α-phenyl-butan;1,1-Diaethoxy-4-phenyl-butan-2-on;1,1-Diethoxy-4-phenylbutan-2-one
1,1-diethoxy-4-phenylbutan-2-one化学式
CAS
96952-94-2
化学式
C14H20O3
mdl
——
分子量
236.311
InChiKey
BSJTVOCIXVZTJF-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 沸点:
    142-145 °C(Press: 10 Torr)
  • 密度:
    1.020±0.06 g/cm3(Predicted)

计算性质

  • 辛醇/水分配系数(LogP):
    2.4
  • 重原子数:
    17
  • 可旋转键数:
    8
  • 环数:
    1.0
  • sp3杂化的碳原子比例:
    0.5
  • 拓扑面积:
    35.5
  • 氢给体数:
    0
  • 氢受体数:
    3

反应信息

  • 作为反应物:
    参考文献:
    名称:
    Qi, Chen Feng; Gomi, Yasushiro; Hirano, Takashi, Journal of the Chemical Society. Perkin transactions I, 1992, # 13, p. 1607 - 1612
    摘要:
    DOI:
  • 作为产物:
    参考文献:
    名称:
    Density and Water Exchange-Dependent Growth and Survival of Litopenaeus setiferus Postlarvae
    摘要:
    AbstractThis present study was designed to investigate the effects of stocking density and water exchange on the growth rate, survival and performance index of L. setiferus postlarvae under controlled laboratory conditions. The experiment was done with postlarvae (PL10 to PL40) at densities of 50, 150, 250 and 350 shrimp/m2 and various different water exchanges rate per day (0, 6, 12 and 18%). The maximum growth rate was obtained for shrimp with 12% water exchange per day at all densities. A reduction of the maximum growth rate was observed in relation to density with the highest values in shrimp stocked in a density of 50 and 150 shrimp/m2 (mean value of 0.53 mg/d) and the lowest in shrimp stocked in a density of 350 shrimp/m2 (0.24 mg/d). The multiple regression equation obtained to relate performance index (growth rate* survival : PI), shrimp density (X1) and water exchange (X2) was: PI = 0.31 + (0.001) X1+ 0.039 X2+ 2.28 × 10−6 X12+ (−0.0017) X22+ (0.000026)X1X2,R2= 0.78; P > 0.03. According to this equation the optimum shrimp density‐water exchange comhination was between 5 to 12% of water exchange at stocking density of between 50 and 150 shrimp/m2. Salinity, ammonia‐N and nitrite‐N increased according to the time spent in tanks without water exchange. With no (0%) water exchange, water quality parameters measured were outside the optimum for L. setiferus postlarvae. The use of optimum density and water exchange in a nursery system for L. setiferus with optimum variables established is proposed.
    DOI:
    10.1111/j.1749-7345.2001.tb01091.x
点击查看最新优质反应信息

文献信息

  • A Scalable Metal‐, Azide‐, and Halogen‐Free Method for the Preparation of Triazoles
    作者:Peter R. Clark、Glynn D. Williams、Jerome F. Hayes、Nicholas C. O. Tomkinson
    DOI:10.1002/anie.201915944
    日期:2020.4.20
    α-ketoacetals, tosyl hydrazide, and a primary amine. Functional group tolerance is outstanding in both the α-ketoacetal and amine coupling partners providing access to 4-, 1,4-, 1,5-, and 1,4,5- substituted triazoles in excellent yield. This robust method results in densely functionalised 1,2,3-triazoles that remain challenging to prepare by azide-alkyne cycloaddition (AAC, CuAAC, RuAAC) methods and can be scaled
    已开发出一种可扩展的,无金属,无叠氮化物和无卤素的方法,用于合成取代的1,2,3-三唑。该反应通过α-酮缩醛,甲苯磺酰脲和伯胺的3组分偶联而进行。在α-酮缩醛和胺偶合伙伴中,官能团的耐受性均十分出色,从而能够以优异的产率获得4-,1,4-,1,5-和1,4,5-取代的三唑。这种稳健的方法导致了稠密官能化的1,2,3-三唑,这些化合物仍然难以通过叠氮化物-炔烃环加成(AAC,CuAAC,RuAAC)方法制备,并且可以在间歇式或流式反应器中进行规模化。还描述了脂族胺或苯胺的化学选择性反应的方法,揭示了这种新颖且用途广泛的转化的一些潜力。
  • Organocatalytic asymmetric biomimetic transamination of α-keto acetals to chiral α-amino acetals
    作者:Hongjie Pan、Ying Xie、Mao Liu、Yian Shi
    DOI:10.1039/c3ra42906g
    日期:——
    This paper describes a chiral base-catalyzed asymmetric biomimetic transamination of α-keto acetals. A wide variety of α-amino acetals containing various functional groups can be synthesized in 50–85% yield and 82–86% ee.
    本文描述了α-酮缩醛的手性碱催化的不对称仿生转氨作用。可以合成各种含各种官能团的α-氨基乙缩醛,产率为50-85%,ee为82-86%。
  • Qi, Chen Feng; Gomi, Yasushiro; Hirano, Takashi, Journal of the Chemical Society. Perkin transactions I, 1992, # 13, p. 1607 - 1612
    作者:Qi, Chen Feng、Gomi, Yasushiro、Hirano, Takashi、Ohashi, Mamoru、Ohmiya, Yoshihiro、Tsuji, Frederick I.
    DOI:——
    日期:——
  • Density and Water Exchange-Dependent Growth and Survival of Litopenaeus setiferus Postlarvae
    作者:Gabriela Palomino、Fabian Contreras、Adolfo Sanchez、Carlos Rosas
    DOI:10.1111/j.1749-7345.2001.tb01091.x
    日期:2001.6
    AbstractThis present study was designed to investigate the effects of stocking density and water exchange on the growth rate, survival and performance index of L. setiferus postlarvae under controlled laboratory conditions. The experiment was done with postlarvae (PL10 to PL40) at densities of 50, 150, 250 and 350 shrimp/m2 and various different water exchanges rate per day (0, 6, 12 and 18%). The maximum growth rate was obtained for shrimp with 12% water exchange per day at all densities. A reduction of the maximum growth rate was observed in relation to density with the highest values in shrimp stocked in a density of 50 and 150 shrimp/m2 (mean value of 0.53 mg/d) and the lowest in shrimp stocked in a density of 350 shrimp/m2 (0.24 mg/d). The multiple regression equation obtained to relate performance index (growth rate* survival : PI), shrimp density (X1) and water exchange (X2) was: PI = 0.31 + (0.001) X1+ 0.039 X2+ 2.28 × 10−6 X12+ (−0.0017) X22+ (0.000026)X1X2,R2= 0.78; P > 0.03. According to this equation the optimum shrimp density‐water exchange comhination was between 5 to 12% of water exchange at stocking density of between 50 and 150 shrimp/m2. Salinity, ammonia‐N and nitrite‐N increased according to the time spent in tanks without water exchange. With no (0%) water exchange, water quality parameters measured were outside the optimum for L. setiferus postlarvae. The use of optimum density and water exchange in a nursery system for L. setiferus with optimum variables established is proposed.
查看更多

同类化合物

(βS)-β-氨基-4-(4-羟基苯氧基)-3,5-二碘苯甲丙醇 (S)-(-)-7'-〔4(S)-(苄基)恶唑-2-基]-7-二(3,5-二-叔丁基苯基)膦基-2,2',3,3'-四氢-1,1-螺二氢茚 (S)-盐酸沙丁胺醇 (S)-3-(叔丁基)-4-(2,6-二甲氧基苯基)-2,3-二氢苯并[d][1,3]氧磷杂环戊二烯 (S)-2,2'-双[双(3,5-三氟甲基苯基)膦基]-4,4',6,6'-四甲氧基联苯 (S)-1-[3,5-双(三氟甲基)苯基]-3-[1-(二甲基氨基)-3-甲基丁烷-2-基]硫脲 (R)富马酸托特罗定 (R)-(-)-盐酸尼古地平 (R)-(+)-7-双(3,5-二叔丁基苯基)膦基7''-[((6-甲基吡啶-2-基甲基)氨基]-2,2'',3,3''-四氢-1,1''-螺双茚满 (R)-3-(叔丁基)-4-(2,6-二苯氧基苯基)-2,3-二氢苯并[d][1,3]氧杂磷杂环戊烯 (R)-2-[((二苯基膦基)甲基]吡咯烷 (N-(4-甲氧基苯基)-N-甲基-3-(1-哌啶基)丙-2-烯酰胺) (5-溴-2-羟基苯基)-4-氯苯甲酮 (5-溴-2-氯苯基)(4-羟基苯基)甲酮 (5-氧代-3-苯基-2,5-二氢-1,2,3,4-oxatriazol-3-鎓) (4S,5R)-4-甲基-5-苯基-1,2,3-氧代噻唑烷-2,2-二氧化物-3-羧酸叔丁酯 (4-溴苯基)-[2-氟-4-[6-[甲基(丙-2-烯基)氨基]己氧基]苯基]甲酮 (4-丁氧基苯甲基)三苯基溴化磷 (3aR,8aR)-(-)-4,4,8,8-四(3,5-二甲基苯基)四氢-2,2-二甲基-6-苯基-1,3-二氧戊环[4,5-e]二恶唑磷 (2Z)-3-[[(4-氯苯基)氨基]-2-氰基丙烯酸乙酯 (2S,3S,5S)-5-(叔丁氧基甲酰氨基)-2-(N-5-噻唑基-甲氧羰基)氨基-1,6-二苯基-3-羟基己烷 (2S,2''S,3S,3''S)-3,3''-二叔丁基-4,4''-双(2,6-二甲氧基苯基)-2,2'',3,3''-四氢-2,2''-联苯并[d][1,3]氧杂磷杂戊环 (2S)-(-)-2-{[[[[3,5-双(氟代甲基)苯基]氨基]硫代甲基]氨基}-N-(二苯基甲基)-N,3,3-三甲基丁酰胺 (2S)-2-[[[[[[((1R,2R)-2-氨基环己基]氨基]硫代甲基]氨基]-N-(二苯甲基)-N,3,3-三甲基丁酰胺 (2-硝基苯基)磷酸三酰胺 (2,6-二氯苯基)乙酰氯 (2,3-二甲氧基-5-甲基苯基)硼酸 (1S,2S,3S,5S)-5-叠氮基-3-(苯基甲氧基)-2-[(苯基甲氧基)甲基]环戊醇 (1-(4-氟苯基)环丙基)甲胺盐酸盐 (1-(3-溴苯基)环丁基)甲胺盐酸盐 (1-(2-氯苯基)环丁基)甲胺盐酸盐 (1-(2-氟苯基)环丙基)甲胺盐酸盐 (-)-去甲基西布曲明 龙胆酸钠 龙胆酸叔丁酯 龙胆酸 龙胆紫 龙胆紫 齐达帕胺 齐诺康唑 齐洛呋胺 齐墩果-12-烯[2,3-c][1,2,5]恶二唑-28-酸苯甲酯 齐培丙醇 齐咪苯 齐仑太尔 黑染料 黄酮,5-氨基-6-羟基-(5CI) 黄酮,6-氨基-3-羟基-(6CI) 黄蜡,合成物 黄草灵钾盐