A rapid synthesis of lavendustin-mimetic small molecules by click fragment assembly
摘要:
Lavendustin-mimetic small molecules modifying the linker -CH(2)-NH- with an 1,2,3-triazole ring have been synthesized via a click chemistry. Two pharmacophoric fragments of lavendustin were varied to investigate chemical space and the auxophoric -CH(2)-NH- was altered to an 1,2,3-triazole for rapid click conjugation. The small molecules were evaluated against HCT116 colon cancer and CCRF-CEM leukemia cell lines. Among 28 analogues, 3-phenylpropyl ester 26b inhibited CCRF-CEM leukemia cell growth with GI(50) value of 0.9 mu M. (c) 2010 Elsevier Ltd. All rights reserved.
A rapid synthesis of lavendustin-mimetic small molecules by click fragment assembly
摘要:
Lavendustin-mimetic small molecules modifying the linker -CH(2)-NH- with an 1,2,3-triazole ring have been synthesized via a click chemistry. Two pharmacophoric fragments of lavendustin were varied to investigate chemical space and the auxophoric -CH(2)-NH- was altered to an 1,2,3-triazole for rapid click conjugation. The small molecules were evaluated against HCT116 colon cancer and CCRF-CEM leukemia cell lines. Among 28 analogues, 3-phenylpropyl ester 26b inhibited CCRF-CEM leukemia cell growth with GI(50) value of 0.9 mu M. (c) 2010 Elsevier Ltd. All rights reserved.
A rapid synthesis of lavendustin-mimetic small molecules by click fragment assembly
作者:Jieun Yoon、Jae-Sang Ryu
DOI:10.1016/j.bmcl.2010.05.014
日期:2010.7
Lavendustin-mimetic small molecules modifying the linker -CH(2)-NH- with an 1,2,3-triazole ring have been synthesized via a click chemistry. Two pharmacophoric fragments of lavendustin were varied to investigate chemical space and the auxophoric -CH(2)-NH- was altered to an 1,2,3-triazole for rapid click conjugation. The small molecules were evaluated against HCT116 colon cancer and CCRF-CEM leukemia cell lines. Among 28 analogues, 3-phenylpropyl ester 26b inhibited CCRF-CEM leukemia cell growth with GI(50) value of 0.9 mu M. (c) 2010 Elsevier Ltd. All rights reserved.