Synthesis, Antimalarial Activity, and Preclinical Pharmacology of a Novel Series of 4′-Fluoro and 4′-Chloro Analogues of Amodiaquine. Identification of a Suitable “Back-Up” Compound for N-tert-Butyl Isoquine
摘要:
On the basis of a mechanistic understanding of the toxicity of the 4-aminoquinoline arnodiaquine (1b), three series of amodiaquine analogues have been prepared where the 4-aminophenol "metabolic alert" has been modified by replacement of the 4'-hydroxy group with a hydrogen, fluorine, or chlorine atom. Following antimalarial assessment and studies on mechanism of action, two candidates were selected for detailed ADME studies and in vitro and in vivo toxicological assessment. 4'-Fluoro-N-tert-butylamodiaquine (2k) was subsequently identified as a candidate for further development studies based on potent activity versus chloroquine-sensitive and resistant parasites,, moderate to excellent oral bioavailability, low toxicity in in vitro studies, and an acceptable safety profile.
Synthesis, Antimalarial Activity, and Preclinical Pharmacology of a Novel Series of 4′-Fluoro and 4′-Chloro Analogues of Amodiaquine. Identification of a Suitable “Back-Up” Compound for N-tert-Butyl Isoquine
摘要:
On the basis of a mechanistic understanding of the toxicity of the 4-aminoquinoline arnodiaquine (1b), three series of amodiaquine analogues have been prepared where the 4-aminophenol "metabolic alert" has been modified by replacement of the 4'-hydroxy group with a hydrogen, fluorine, or chlorine atom. Following antimalarial assessment and studies on mechanism of action, two candidates were selected for detailed ADME studies and in vitro and in vivo toxicological assessment. 4'-Fluoro-N-tert-butylamodiaquine (2k) was subsequently identified as a candidate for further development studies based on potent activity versus chloroquine-sensitive and resistant parasites,, moderate to excellent oral bioavailability, low toxicity in in vitro studies, and an acceptable safety profile.
Advancing <i>Meta</i>-Selective C–H Amination through Non-Covalent Interactions
作者:Qianqian Lv、Zongxing Hu、Yousong Zhang、Zhihan Zhang、Honghui Lei
DOI:10.1021/jacs.3c09904
日期:2024.1.24
Regioselective C–H amination of simple arenes is highly desirable, but accessing meta-sites of ubiquitous arenes has proven challenging due to the lack of both electronic and spatial preference. This study demonstrates the successful use of various privileged nitrogen-containing functionalities found in pharmaceutical compounds to direct meta-C–H amination of arenes, overcoming the long-standing requirement