β-Cyclodextrin Host−Guest Complexes Probed under Thermodynamic Equilibrium: Thermodynamics and AFM Force Spectroscopy
摘要:
The rupture forces of individual host-guest complexes between beta-cycloclextrin (beta-CD) heptathioether monolayers on Au(111) and several surface-confined guests were measured in aqueous medium by single molecule force spectroscopy using an atomic force microscope. Anilyl, toluidyl, tert-butylphenyl, and adamantylthiols (0.2-1%) were immobilized in mixed monolayers with 2-mercaptoethanol on gold-coated AFM tips. For all guests and for all surface coverages, the force-displacement curves measured between the functionalized tips and monolayers of beta-CD exhibited single, as well as multiple, pull-off events. The histograms of the pull-off forces showed several maxima at equidistant forces, with force quanta characteristic for each guest of 39 +/- 15, 45 +/- 15, 89 +/- 15, and 102 +/- 15 pN, respectively. These force quanta were independent of the loading rate, indicating that, because of the fast complexation/ decomplexation kinetics, the rupture forces were probed under thermodynamic equilibrium. The force values followed the same trend as the free binding energy DeltaG(o) measured for model guest compounds in solution or on beta-CD monolayers, as determined by microcalorimetry and surface plasmon resonance measurements, respectively. A descriptive model was developed to correlate quantitatively the pull-off force values with the DeltaG(o) of the complexes, based on the evaluation of the energy potential landscape of tip-surface interaction.
To find novel non-hydroxamate histonedeacetylase (HDAC) inhibitors, a series of compounds modeled after suberoylanilide hydroxamic acid (SAHA) was designed and synthesized. In this series, compound 7, in which the hydroxamic acid of SAHA is replaced by a thiol, was found to be as potent as SAHA, and optimization of this series led to the identification of HDAC inhibitors more potent than SAHA. In cancer
In order to find novel nonhydroxamate histone deacetylase (HDAC) inhibitors, a series of thiol-based compounds modeled after suberoylanilide hydroxamic acid (SAHA) was synthesized, and their inhibitory effect on HDACs was evaluated. Compound 6, in which the hydroxamic acid of SAHA was replaced by a thiol, was found to be as potent as SAHA, and optimization of this series led to the identification of HDAC inhibitors more potent than SAHA. (C) 2004 Elsevier Ltd. All rights reserved.