The first catalytic enantioselective synthesis of oxaziridines is presented. The oxidation of aryl and alkyl aldimines with m-CPBA under organocatalytic conditions using cinchona alkaloid-derived catalysts furnished optically active oxaziridines in good yields and high enantioselectivities (up to 94% ee). Mechanistic investigations indicate a stepwise enantioselective oxidation process.
Kinetic Resolution of Oxaziridines via Chiral Bifunctional Guanidine-Catalyzed Enantioselective α-Hydroxylation of β-Keto Esters
作者:Xiaobin Lin、Sai Ruan、Qian Yao、Chengkai Yin、Lili Lin、Xiaoming Feng、Xiaohua Liu
DOI:10.1021/acs.orglett.6b01614
日期:2016.8.5
efficient kinetic resolution of racemic oxaziridines has been realized via catalytic asymmetric α-hydroxylation of available β-ketoesters. In the presence of a chiral bifunctional guanidine catalyst, a variety of optically active oxaziridines and chiral α-hydroxy β-ketoesters were generated with excellent results (ee’s of up to 99% and 97% and yields of up to 44% and 54%, respectively).
Bifunctional Ammonium Salt Catalyzed Asymmetric α-Hydroxylation of β-Ketoesters by Simultaneous Resolution of Oxaziridines
作者:Johanna Novacek、Joseph A. Izzo、Mathew J. Vetticatt、Mario Waser
DOI:10.1002/chem.201604153
日期:2016.11.21
Chiral bifunctional urea‐containing ammonium salts were found to be very efficient catalysts for asymmetric α‐hydroxylation reactions of β‐ketoesters with oxaziridines under base‐free conditions. The reaction is accompanied by a simultaneous kinetic resolution of the oxaziridine and a plausible and so far unprecedented bifunctional transition‐state model has been obtained by means of DFT calculations