POCOP-Type Pincer Complexes of Nickel: Synthesis, Characterization, and Ligand Exchange Reactivities of New Cationic Acetonitrile Adducts
作者:Sébastien Lapointe、Boris Vabre、Davit Zargarian
DOI:10.1021/acs.organomet.5b00272
日期:2015.7.27
This report describes the synthesis, characterization, and ligand exchange studies of a family of cationic acetonitrile adducts of nickel featuring resorcinol-based, pincer-type POCOP ligands. The compounds [(R-POCOPR')Ni(NCMe)][OSO2CF3] (R-POCOPR' = 2,6-(R'2PO)(2)(RnC(6)H(3)n); R' = i-Pr: R = H (1), p-Me (2), p-OMe (3), p-CO2Me (4), p-Br (5), m,m-t-Bu2 (6), m-OMe (7), m-CO2Me (8); R' = t-Bu: R = H (9), p-CO2Me (10)) were prepared in 80-93% yields by reacting the corresponding charge-neutral bromo derivatives with Ag(OSO2CF3) in acetonitrile. The impact of the R- and R'-substituents on electronics and structures of 1-10 have been probed by NMR, UVvis, and IR spectra, X-ray crystallography, and cyclic voltammetry measurements. The observed nu(C=N) values were found to increase with the increasing electron-withdrawing nature of R, i.e., in the order 7 < 3 similar to 2 similar to 6 < 1 < 5 similar to 8 < 4 and 9 < 10. This trend is consistent with the anticipation that enhanced electrophilicity of the nickel center should result in an increase in net MeCN -> Ni sigma-donation. That this transfer of electron density from acetonitrile to the nickel center does not adequately counteract the impact of electron-withdrawing substituents was evident from the measured redox potentials: the MeO2C-substituted cations showed the highest oxidation potentials. Moreover, all cationic adducts showed greater oxidation potentials compared with their corresponding charge-neutral bromo precursors. Equilibrium studies conducted with selected [(R-POCOPR')Ni(NCMe)][OSO2CF3] and (R-POCOPR')NiBr (R' = i-Pr) have confirmed facile MeCN/Br exchange between these derivatives and show that the cationic adducts are stabilized with MeO-POCOP, whereas the charge-neutral bromo species are stabilized with MeO2C-POCOP. The potential implications of these findings for the catalytic reactivities of the title cationic complexes have been discussed.