摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

4-羟基-2-甲基苯硼酸 | 493035-82-8

中文名称
4-羟基-2-甲基苯硼酸
中文别名
4-羟基-2-甲基苯基硼酸;2-甲基-4-羟基苯硼酸
英文名称
(4-hydroxy-2-methylphenyl)boronic acid
英文别名
4-hydroxyl-2-methyl-phenylboronic acid;4-Hydroxy-2-methylphenylboronic acid
4-羟基-2-甲基苯硼酸化学式
CAS
493035-82-8
化学式
C7H9BO3
mdl
MFCD03788424
分子量
151.958
InChiKey
OYIYNIONWDBJIF-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 熔点:
    100-104°C
  • 沸点:
    361.4±52.0 °C(Predicted)
  • 密度:
    1.26±0.1 g/cm3(Predicted)

计算性质

  • 辛醇/水分配系数(LogP):
    1.82
  • 重原子数:
    11
  • 可旋转键数:
    1
  • 环数:
    1.0
  • sp3杂化的碳原子比例:
    0.142
  • 拓扑面积:
    60.7
  • 氢给体数:
    3
  • 氢受体数:
    3

安全信息

  • 危险等级:
    IRRITANT
  • 危险品标志:
    Xi
  • 安全说明:
    S26,S36/37/39
  • 危险类别码:
    R36/37/38
  • 海关编码:
    2931900090
  • 危险性防范说明:
    P261,P305+P351+P338
  • 危险性描述:
    H302,H315,H319,H335
  • 储存条件:
    2-8°C

SDS

SDS:b5f6b4e7d57fc021e634a55d95e761a2
查看
Material Safety Data Sheet

Section 1. Identification of the substance
Product Name: 4-Hydroxy-2-methylphenylboronic acid
Synonyms: 4-Borono-3-methylphenol; 5-hydroxytoluene-2-boronic acid

Section 2. Hazards identification
Harmful by inhalation, in contact with skin, and if swallowed.
H315: Causes skin irritation
H319: Causes serious eye irritation
H335: May cause respiratory irritation
P261: Avoid breathing dust/fume/gas/mist/vapours/spray
P280: Wear protective gloves/protective clothing/eye protection/face protection
P305+P351+P338: IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses if present
and easy to do – continue rinsing
P304+P340: IF INHALED: Remove victim to fresh air and keep at rest in a position comfortable for breathing
P405: Store locked up

Section 3. Composition/information on ingredients.
Ingredient name: 4-Hydroxy-2-methylphenylboronic acid
CAS number: 493035-82-8

Section 4. First aid measures
Skin contact: Immediately wash skin with copious amounts of water for at least 15 minutes while removing
contaminated clothing and shoes. If irritation persists, seek medical attention.
Eye contact: Immediately wash skin with copious amounts of water for at least 15 minutes. Assure adequate
flushing of the eyes by separating the eyelids with fingers. If irritation persists, seek medical
attention.
Inhalation: Remove to fresh air. In severe cases or if symptoms persist, seek medical attention.
Ingestion: Wash out mouth with copious amounts of water for at least 15 minutes. Seek medical attention.

Section 5. Fire fighting measures
In the event of a fire involving this material, alone or in combination with other materials, use dry
powder or carbon dioxide extinguishers. Protective clothing and self-contained breathing apparatus
should be worn.

Section 6. Accidental release measures
Personal precautions: Wear suitable personal protective equipment which performs satisfactorily and meets local/state/national
standards.
Respiratory precaution: Wear approved mask/respirator
Hand precaution: Wear suitable gloves/gauntlets
Skin protection: Wear suitable protective clothing
Eye protection: Wear suitable eye protection
Methods for cleaning up: Mix with sand or similar inert absorbent material, sweep up and keep in a tightly closed container
for disposal. See section 12.
Environmental precautions: Do not allow material to enter drains or water courses.

Section 7. Handling and storage
Handling: This product should be handled only by, or under the close supervision of, those properly qualified
in the handling and use of potentially hazardous chemicals, who should take into account the fire,
health and chemical hazard data given on this sheet.
Storage: Store in closed vessels, refrigerated.

Section 8. Exposure Controls / Personal protection
Engineering Controls: Use only in a chemical fume hood.
Personal protective equipment: Wear laboratory clothing, chemical-resistant gloves and safety goggles.
General hydiene measures: Wash thoroughly after handling. Wash contaminated clothing before reuse.

Section 9. Physical and chemical properties
Appearance: Not specified
Boiling point: No data
Melting point: No data
Flash point: No data
Density: No data
Molecular formula: C7H9BO3
Molecular weight: 152.0

Section 10. Stability and reactivity
Conditions to avoid: Heat, flames and sparks.
Materials to avoid: Oxidizing agents.
Possible hazardous combustion products: Carbon monoxide.

Section 11. Toxicological information
No data.

Section 12. Ecological information
No data.

Section 13. Disposal consideration
Arrange disposal as special waste, by licensed disposal company, in consultation with local waste
disposal authority, in accordance with national and regional regulations.

Section 14. Transportation information
Non-harzardous for air and ground transportation.

Section 15. Regulatory information
No chemicals in this material are subject to the reporting requirements of SARA Title III, Section
302, or have known CAS numbers that exceed the threshold reporting levels established by SARA
Title III, Section 313.


SECTION 16 - ADDITIONAL INFORMATION
N/A

反应信息

  • 作为反应物:
    描述:
    4-羟基-2-甲基苯硼酸三苯基膦双(三氟甲磺酰亚胺)金 作用下, 以 甲苯 为溶剂, 反应 1.0h, 以92%的产率得到间甲酚
    参考文献:
    名称:
    Gold-Catalyzed Proto- and Deuterodeboronation
    摘要:
    A mild gold-catalyzed protodeboronation reaction, which does not require acid or base additives and can be carried out in "green" solvents, is described. As a result, the reaction is very functional-group-tolerant, even to acid- and base-sensitive functional groups, and should allow for the boronic acid group to be used as an effective traceless directing or blocking group. The reaction has also been extended to deuterodeboronations for regiospecific ipso-deuterations of aryls and heteroaryls from the corresponding organoboronic acid. Based on density functional theory calculations, a mechanism is proposed that involves nucleophilic attack of water at boron followed by rate-limiting B-C bond cleavage and facile protonolysis of a Au-sigma-phenyl intermediate.
    DOI:
    10.1021/acs.joc.5b01041
  • 作为产物:
    描述:
    3-乙基-4-(4,4,5,5-四甲基-1,3,2-二噁硼烷-2-基)苯酚sodium periodate 、 ammonium acetate 、 作用下, 以 丙酮 为溶剂, 反应 68.0h, 以49%的产率得到4-羟基-2-甲基苯硼酸
    参考文献:
    名称:
    FARNESOID X RECEPTOR AGONISTS
    摘要:
    本发明提供了新型的取代异噁唑化合物、药物组合物、治疗用途和制备方法。
    公开号:
    US20080096921A1
点击查看最新优质反应信息

文献信息

  • [EN] BCR-ABL TYROSINE-KINASE LIGANDS CAPABLE OF DIMERIZING IN AN AQUEOUS SOLUTION, AND METHODS OF USING SAME<br/>[FR] LIGANDS DE TYROSINE-KINASE BCR-ABL CAPABLES DE SE DIMÉRISER DANS UNE SOLUTION AQUEUSE, ET PROCÉDÉS D'UTILISATION DE CEUX-CI
    申请人:COFERON INC
    公开号:WO2015106292A1
    公开(公告)日:2015-07-16
    Described herein are monomers capable of forming a biologically useful multimer when in contact with one, two, three or more other monomers in an aqueous media. In one aspect, such monomers may be capable of binding to another monomer in an aqueous media (e.g. invivo) to form a multimer (e.g. a dimer). Contemplated monomers may include a ligand moiety, a linker element, and a connector element that joins the ligand moiety and the linker element. In an aqueous media, such contemplated monomers may join together via each linker element and may thus be capable of modulating one or more biomolecules substantially simultaneously, e.g., modulate two or more binding sites on a Bcr-Abl tyrosine kinase.
    本文描述了一种单体,当与水性介质中的另一个、两个、三个或更多其他单体接触时,能够形成生物学上有用的多聚体。在一个方面,这种单体可能能够在水性介质(例如体内)中与另一个单体结合以形成多聚体(例如二聚体)。考虑到的单体可能包括配体基团、连接元素和连接配体基团与连接元素的连接元素。在水性介质中,这些考虑到的单体可以通过每个连接元素结合在一起,因此可以同时调节一个或多个生物分子,例如,调节Bcr-Abl酪氨酸激酶上的两个或更多结合位点。
  • GPR40 AGONISTS IN ANTI-DIABETIC DRUG COMBINATIONS
    申请人:Janssen Pharmaceutica NV
    公开号:US20170290800A1
    公开(公告)日:2017-10-12
    Disclosed are compositions comprising (a) a GPR40 agonist and (b) an SGLT2 inhibitor, and methods for treating of disorders that are affected by the modulation of the GPR40 receptor and SGLT2 transporter. Such GPR40 compounds are represented by Formula (I) as follows: wherein ring W, R 1 , R 2 , R 3 , R 5 , R 6 , A, and Z, are defined herein.
    本文披露了包含(a)GPR40激动剂和(b)SGLT2抑制剂的组合物,以及治疗受GPR40受体和SGLT2转运蛋白调节影响的疾病的方法。这些GPR40化合物由以下式(I)表示: 其中环W,R1,R2,R3,R5,R6,A和Z在此处被定义。
  • Design, Synthesis, and Structure−Activity Relationships of Aminopyridine <i>N</i>-Oxides, a Novel Scaffold for the Potent and Selective Inhibition of p38 Mitogen Activated Protein Kinase
    作者:Wenceslao Lumeras、Francisco Caturla、Laura Vidal、Cristina Esteve、Cristina Balagué、Adelina Orellana、María Domínguez、Ramón Roca、Josep M. Huerta、Núria Godessart、Bernat Vidal
    DOI:10.1021/jm9008604
    日期:2009.9.10
    A novel series of aminopyridine N-oxides were designed, synthesized, and tested for their ability to inhibit p38α MAP kinase. Some of these compounds showed a significant reduction in the LPS-induced TNFα production in human whole blood. Structure−activity relationship studies revealed that N-oxide oxygen was essential for activity and was probably a determinant factor for a marked selectivity against
    设计,合成和测试了一系列新的氨基吡啶N-氧化物抑制p38αMAP激酶的能力。这些化合物中的一些显示出人全血中LPS诱导的TNFα产生的显着减少。结构-活性关系研究表明,N-氧对于活性至关重要,并且可能是针对其他相关激酶的显着选择性的决定因素。化合物45被确定为有效的和选择性的p38α抑制剂,在功效和药代动力学之间具有适当的平衡。在急性炎症小鼠模型中证明了45的体内功效可降低TNFα水平(ED 50当在LPS给药前1.5 h口服时,LPS诱导的TNFα产生= 1 mg / kg)。口服给药(ED 50 = 4.5 mg / kg)时,在已确诊疾病的大鼠的慢性佐剂性关节炎模型中进一步证明了45的口服功效。
  • Nanoscale synthesis and affinity ranking
    作者:Nathan J. Gesmundo、Bérengère Sauvagnat、Patrick J. Curran、Matthew P. Richards、Christine L. Andrews、Peter J. Dandliker、Tim Cernak
    DOI:10.1038/s41586-018-0056-8
    日期:2018.5
    Most drugs are developed through iterative rounds of chemical synthesis and biochemical testing to optimize the affinity of a particular compound for a protein target of therapeutic interest. This process is challenging because candidate molecules must be selected from a chemical space of more than 1060 drug-like possibilities 1 , and a single reaction used to synthesize each molecule has more than 107 plausible permutations of catalysts, ligands, additives and other parameters 2 . The merger of a method for high-throughput chemical synthesis with a biochemical assay would facilitate the exploration of this enormous search space and streamline the hunt for new drugs and chemical probes. Miniaturized high-throughput chemical synthesis3–7 has enabled rapid evaluation of reaction space, but so far the merger of such syntheses with bioassays has been achieved with only low-density reaction arrays, which analyse only a handful of analogues prepared under a single reaction condition8–13. High-density chemical synthesis approaches that have been coupled to bioassays, including on-bead 14 , on-surface 15 , on-DNA 16 and mass-encoding technologies 17 , greatly reduce material requirements, but they require the covalent linkage of substrates to a potentially reactive support, must be performed under high dilution and must operate in a mixture format. These reaction attributes limit the application of transition-metal catalysts, which are easily poisoned by the many functional groups present in a complex mixture, and of transformations for which the kinetics require a high concentration of reactant. Here we couple high-throughput nanomole-scale synthesis with a label-free affinity-selection mass spectrometry bioassay. Each reaction is performed at a 0.1-molar concentration in a discrete well to enable transition-metal catalysis while consuming less than 0.05 milligrams of substrate per reaction. The affinity-selection mass spectrometry bioassay is then used to rank the affinity of the reaction products to target proteins, removing the need for time-intensive reaction purification. This method enables the primary synthesis and testing steps that are critical to the invention of protein inhibitors to be performed rapidly and with minimal consumption of starting materials. A system that combines nanoscale synthesis and affinity ranking enables high-throughput screening of reaction conditions and bioactivity for a given protein target, accelerating the process of drug discovery.
    大多数药物都是通过反复的化学合成和生化测试来开发,以优化特定化合物与治疗感兴趣的蛋白质靶点的亲和力。这一过程颇具挑战性,因为候选分子必须从超过10^60种类药物可能性的化学空间中选出,而用于合成每个分子的单一反应中催化剂、配体、添加剂和其他参数的合理排列组合超过10^7种。将高通量化学合成方法与生化分析方法相结合,将有助于探索这一巨大的搜索空间,并简化新型药物和化学探针的寻找过程。微型化高通量化学合成技术已经能够快速评估反应空间,但迄今为止,这种合成方法与生物分析方法的结合,仅限于低密度反应阵列,即在单一反应条件下仅分析少量类似物。高密度化学合成方法与生物分析方法相结合,包括使用珠子上、表面上、DNA上和质量编码等技术,大大减少了材料需求,但这些方法要求底物与潜在的反应性载体共价连接,必须在高度稀释的情况下进行,并且必须在混合物的形式下运作。这些反应特性限制了过渡金属催化剂的应用,因为过渡金属催化剂很容易受到复杂混合物中存在的多种官能团的毒害,而且对于动力学需要高浓度反应物的反应过程也不适用。本研究将高通量纳摩尔级合成与无标记的亲和选择质谱生物分析相结合,使得每个反应在0.1摩尔浓度的条件下进行,既可能实现过渡金属催化,又使得每个反应消耗的底物不足0.05毫克。然后,使用亲和选择质谱生物分析法对反应产物与靶蛋白的亲和力进行排序,省去了耗时的反应纯化步骤。该方法使得对蛋白质抑制剂发明至关重要的初级合成和测试步骤能够快速完成,且起始材料消耗最小。纳米级合成和亲和力排序相结合的系统可以实现对给定蛋白质靶点的反应条件和生物活性进行高通量筛选,从而加速药物发现过程。
  • Alcohol-Enhanced Cu-Mediated Radiofluorination
    作者:Johannes Zischler、Niklas Kolks、Daniel Modemann、Bernd Neumaier、Boris D. Zlatopolskiy
    DOI:10.1002/chem.201604633
    日期:2017.3.8
    emission tomography remains underexplored because convenient procedures for their radiosynthesis are lacking. Consequently, simple methods to prepare radiofluorinated (hetero)arenes are highly sought after. Herein, we report the beneficial effect of primary and secondary alcohols on Cu‐mediated 18F‐labeling. This observation contradicts the assumption that such alcohols are inappropriate solvents for
    由于缺乏方便的放射合成程序,许多18 F标记的(杂)芳烃在正电子发射断层显像中的应用潜力尚未得到开发。因此,强烈期望制备放射性氟化(杂)芳烃的简单方法。在此,我们报告了伯醇和仲醇对铜介导的18的有益作用。F标签。该观察结果与这样的醇与芳香族氟化不适合的溶剂的假设相矛盾。因此,我们开发了一种在一般反应条件下快速放射性标记硼和苯乙烯基底物的广泛范围的方案。值得注意的是,放射性氟化的吲哚,苯酚和苯胺是直接从相应的未保护的前体合成的。此外,该新方法还可以制备放射性氟化的色氨酸,[ 18 F] F-DPA,[ 18 F] DAA1106、6- [ 18 F] FDA和6- [ 18 F] FDOPA。
查看更多