RAFT Polymerization of Bio-Based 1-Vinyl-4-dianhydrohexitol-1,2,3-triazole Stereoisomers Obtained via Click Chemistry
摘要:
Four 1-vinyl-4-dianhydrohexitol-1,2,3-triazole stereoisomers are prepared from isomannide, isoidide, and isosorbide using an alkylation/CuAAC-ligation/elimination three-step strategy. After characterization of the monomers by NMR, differential scanning calorimetry (DSC), and high-resolution mass spectrometry (HRMS), the corresponding stereocontrolled poly(1-vinyl-4-dianhydrohexitol-1,2,3-triazole)s are obtained by RAFT polymerization using a xanthate chain transfer agent. A systematic investigation of the structure-properties relationship of both the monomers and polymers highlights the significant impact of the dianhydrohexitols stereochemistry on their physical properties (H-1 and C-13 NMR chemical shifts, physical state, T-g, thermal stability and solubility). A particularly original and unexpected behavior is highlighted since the two different isosorbide-based poly(1-vinyl-4-dianhydrohexitol-1,2,3-triazole) stereoisomers exhibit contrasting solubility in water.
RAFT Polymerization of Bio-Based 1-Vinyl-4-dianhydrohexitol-1,2,3-triazole Stereoisomers Obtained via Click Chemistry
摘要:
Four 1-vinyl-4-dianhydrohexitol-1,2,3-triazole stereoisomers are prepared from isomannide, isoidide, and isosorbide using an alkylation/CuAAC-ligation/elimination three-step strategy. After characterization of the monomers by NMR, differential scanning calorimetry (DSC), and high-resolution mass spectrometry (HRMS), the corresponding stereocontrolled poly(1-vinyl-4-dianhydrohexitol-1,2,3-triazole)s are obtained by RAFT polymerization using a xanthate chain transfer agent. A systematic investigation of the structure-properties relationship of both the monomers and polymers highlights the significant impact of the dianhydrohexitols stereochemistry on their physical properties (H-1 and C-13 NMR chemical shifts, physical state, T-g, thermal stability and solubility). A particularly original and unexpected behavior is highlighted since the two different isosorbide-based poly(1-vinyl-4-dianhydrohexitol-1,2,3-triazole) stereoisomers exhibit contrasting solubility in water.
POLYMERES TRIAZOLES/TETRAZOLES ISSUS DE LA CYCLO ADDITION DE MONOMERES DERIVES DE DIANHYDROHEXITOL FONCTIONNALISES, COMPOSES INTERMEDIAIRES, LEURS PROCEDES DE PREPARATION ET LEURS APPLICATIONS