摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

[2-[2-[2-[(3β)-cholest-5-en-3-yloxy]ethoxy]ethoxy]ethoxy]acetic acid | 173308-26-4

中文名称
——
中文别名
——
英文名称
[2-[2-[2-[(3β)-cholest-5-en-3-yloxy]ethoxy]ethoxy]ethoxy]acetic acid
英文别名
——
[2-[2-[2-[(3β)-cholest-5-en-3-yloxy]ethoxy]ethoxy]ethoxy]acetic acid化学式
CAS
173308-26-4
化学式
C35H60O6
mdl
——
分子量
576.858
InChiKey
JKNMROJLWJKFJH-SJTWHRLHSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    7.55
  • 重原子数:
    41.0
  • 可旋转键数:
    17.0
  • 环数:
    4.0
  • sp3杂化的碳原子比例:
    0.91
  • 拓扑面积:
    74.22
  • 氢给体数:
    1.0
  • 氢受体数:
    5.0

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    [2-[2-[2-[(3β)-cholest-5-en-3-yloxy]ethoxy]ethoxy]ethoxy]acetic acid吡啶草酰氯N,N-二甲基甲酰胺 作用下, 以 四氢呋喃二氯甲烷 为溶剂, 反应 3.0h, 生成 [2-[2-[2-[(3β)-cholest-5-en-3-yloxy]ethoxy]ethoxy]ethoxy]acetic acid [2-(1,3-dithiol-2-ylidene)-1,3-dithiol-4-yl]methyl ester
    参考文献:
    名称:
    脂质体表面四硫富瓦烯的亚稳态氧化状态†
    摘要:
    氧化还原活性脂质体是通过在磷脂囊泡中掺入四硫富瓦烯-胆固醇共轭物1来制备的。通过UV-可见光谱法监测水溶液中脂质体表面上的四硫富瓦烯(TTF)的氧化。结果表明,由于脂质膜中TTF基团的高局部浓度,形成了单氧化阳离子自由基的亚稳态(TTF +)2π二聚体。这些二聚体可通过添加葫芦[8] uril或通过改变脂质组成而降低膜的横向迁移率来进一步稳定。
    DOI:
    10.1039/c4tb01627k
  • 作为产物:
    描述:
    对甲苯磺酸 作用下, 以 甲苯 为溶剂, 反应 8.0h, 生成 [2-[2-[2-[(3β)-cholest-5-en-3-yloxy]ethoxy]ethoxy]ethoxy]acetic acid
    参考文献:
    名称:
    脂质体主动识别葡萄糖转运蛋白 GLUT1 和整合素 αv β3 用于胶质瘤的双重靶向
    摘要:
    由于血脑屏障(BBB)的存在,胶质瘤的治疗是一个巨大的挑战。为了开发一种有效的胶质瘤靶向药物递送系统以大大提高抗癌药物的脑通透性和靶向胶质瘤,设计并合成了一种新型的胶质瘤靶向葡萄糖-RGD(Glu-RGD)衍生物作为配体制备脂质体有效递送紫杉醇 (PTX) 以穿过 BBB 并靶向神经胶质瘤。脂质体被制备并表征为粒径、zeta 电位、包封效率、释放曲线、稳定性、溶血和细胞毒性。此外,与裸 PTX、未包被、单独修饰的脂质体和通过物理混合共修饰的脂质体相比,Glu-RGD 修饰的脂质体在体外和体内评估中显示出优异的靶向能力。与裸 PTX 相比,相对吸收效率和浓缩效率分别提高了 4.41 和 4.72 倍。此外,与体内成像中的其他组相比,Glu-RGD 修饰的脂质体还在肿瘤部位显示出负载 DiD 的脂质体的最大积累。体外和体内的所有结果表明,Glu-RGD-Lip 将是 PTX 治疗整合素 αvβ3
    DOI:
    10.1002/ardp.201800219
点击查看最新优质反应信息

文献信息

  • Cytomimetic Modeling in Which One Phospholipid Liposome Chemically Attacks Another
    作者:Fredric M. Menger、Vladimir A. Azov
    DOI:10.1021/ja000504x
    日期:2000.7.1
  • Dual-targeting for brain-specific liposomes drug delivery system: Synthesis and preliminary evaluation
    作者:Yao Peng、Yi Zhao、Yang Chen、Zhongzhen Yang、Li Zhang、Wenjiao Xiao、Jincheng Yang、Li Guo、Yong Wu
    DOI:10.1016/j.bmc.2018.08.006
    日期:2018.9
    The treatment of glioma has become a great challenge because of the existence of brain barrier (BB). In order to develop an efficient brain targeting drug delivery system to greatly improve the brain permeability of anti-cancer drugs, a novel brain-targeted glucose-vitamin C (Glu-Vc) derivative was designed and synthesized as liposome ligand for preparing liposome to effectively deliver paclitaxel (PTX). The liposome was prepared and its particle size, zeta potential, encapsulation efficiency, release profile, stability, hemolysis and cytotoxicity were also characterized. What's more, the cellular uptake of CFPE-labeled Glu-Vc-Lip on GLUT 1 - and SVCT 2 -overexpressed C6 cells was 4.79-, 1.95-, 4.00- and 1.53-fold higher than that of Lip, Glu-Lip, Vc-Lip and Glu + Vc-Lip. Also, the Glu-Vc modified liposomes showed superior targeting ability in vivo evaluation compared with naked paclitaxel, non-coated, singly-modified and co-modified by physical blending liposomes. The relative uptake efficiency was enhanced by 7.53 fold to that of naked paclitaxel, while the concentration efficiency was up to 7.89 times. What's more, the Glu-Vc modified liposomes also displayed the maximum accumulation of DiD-loaded liposomes at tumor sites with the strongest fluorescence in the brain in vivo imaging. Our results suggest that chemical modification of liposomes with warheads of glucose and vitamin C represents a promising and efficient strategy for the development of brain-specific liposomes drug delivery system by utilizing the endogenous transportation mechanism of the warheads.
  • Liposomes modified with double-branched biotin: A novel and effective way to promote breast cancer targeting
    作者:Runxin Lu、Lin Zhou、Qiming Yue、Qijun Liu、Xiaojing Cai、Wenjiao Xiao、Li Hai、Li Guo、Yong Wu
    DOI:10.1016/j.bmc.2019.05.039
    日期:2019.7
    Although active targeting liposomes with cancer-specific ligands can bind and internalize into cancer cells, only a few high-efficiency liposomes have been developed so far because traditional single branched ligand modified liposomes generally failed to deliver adequate therapeutic payload. In this paper, we broke the traditional design concept and synthesized the double branched biotin modified cholesterol (Bio(2)-Chol) for the first time. On this basis, different biotin density modified liposomes ((Bio-Chol) Lip, (Bio-Chol)(2)Lip and (Bio(2)-Chol) Lip) were successfully prepared and used as active targeting drug delivery systems for the treatment of breast cancer. The in vitro and in vivo breast cancer-targeting ability of these liposomes were systemically studied using paclitaxel (PTX) as the model drug. And the uptake mechanism of (Bio(2)-Chol) Lip was investigated. The results showed that (Bio(2)-Chol) Lip had the best breast cancer-targeting ability compared with naked paclitaxel, unmodified Lip, (Bio-Chol) Lip and (Bio-Chol)(2)Lip. In particular, the relative uptake efficiency (RE) and concentration efficiency (CE) of (Bio(2)-Chol) Lip were respectively enhanced by 5.61- and 5.06-fold compared to that of naked paclitaxel. Both distribution data and pharmacokinetic parameters suggested that the double branched biotin modified liposome ((Bio(2)-Chol) Lip) is a very promising drug delivery carrier for breast cancer.
查看更多

同类化合物

(5β)-17,20:20,21-双[亚甲基双(氧基)]孕烷-3-酮 (5α)-2′H-雄甾-2-烯并[3,2-c]吡唑-17-酮 (3β,20S)-4,4,20-三甲基-21-[[[三(异丙基)甲硅烷基]氧基]-孕烷-5-烯-3-醇-d6 (25S)-δ7-大发酸 (20R)-孕烯-4-烯-3,17,20-三醇 (11β,17β)-11-[4-({5-[(4,4,5,5,5-五氟戊基)磺酰基]戊基}氧基)苯基]雌二醇-1,3,5(10)-三烯-3,17-二醇 齐墩果酸衍生物1 黄麻属甙 黄芪皂苷III 黄芪皂苷 II 黄芪甲苷 IV 黄芪甲苷 黄肉楠碱 黄果茄甾醇 黄杨醇碱E 黄姜A 黄夹苷B 黄夹苷 黄夹次甙乙 黄夹次甙乙 黄夹次甙丙 黄体酮环20-(乙烯缩醛) 黄体酮杂质EPL 黄体酮杂质1 黄体酮杂质 黄体酮杂质 黄体酮EP杂质M 黄体酮EP杂质G(RRT≈2.53) 黄体酮EP杂质F 黄体酮6-半琥珀酸酯 黄体酮 17alpha-氢过氧化物 黄体酮 11-半琥珀酸酯 黄体酮 麦角甾醇葡萄糖苷 麦角甾醇氢琥珀酸盐 麦角甾烷-6-酮,2,3-环氧-22,23-二羟基-,(2b,3b,5a,22R,23R,24S)-(9CI) 麦角甾烷-3,6,8,15,16-五唑,28-[[2-O-(2,4-二-O-甲基-b-D-吡喃木糖基)-a-L-呋喃阿拉伯糖基]氧代]-,(3b,5a,6a,15b,16b,24x)-(9CI) 麦角甾烷-26-酸,5,6:24,25-二环氧-14,17,22-三羟基-1-羰基-,d-内酯,(5b,6b,14b,17a,22R,24S,25S)-(9CI) 麦角甾-8-烯-3-醇 麦角甾-8,24(28)-二烯-26-酸,7-羟基-4-甲基-3,11-二羰基-,(4a,5a,7b,25S)- 麦角甾-7,22-二烯-3-酮 麦角甾-7,22-二烯-17-醇-3-酮 麦角甾-5,24-二烯-26-酸,3-(b-D-吡喃葡萄糖氧基)-1,22,27-三羟基-,d-内酯,(1a,3b,22R)- 麦角甾-5,22,25-三烯-3-醇 麦角甾-4,6,8(14),22-四烯-3-酮 麦角甾-1,4-二烯-3-酮,7,24-二(乙酰氧基)-17,22-环氧-16,25-二羟基-,(7a,16b,22R)-(9CI) 麦角固醇 麦冬皂苷D 麦冬皂苷D 麦冬皂苷 B