A nickel-catalyzed semihydrogenation of azoarenes to hydrazoarenes with NH3BH3 is developed. The catalytic system exhibits good functional group tolerance and a high turnover frequency at room temperature. Results of control and deuterium-labeling experiments indicate that the ethanol hydroxyl and BH3 groups each donated one hydrogen to this transfer hydrogenation, and the main byproducts were B(OEt)3
Cobalt-catalyzed borylative reduction of azobenzenes using pinacolborane is developed. The simple cobalt chloride catalyst and reaction conditions make this protocol attractive for hydrazobenzene synthesis. This borylative reduction shows good functional group compatibility and can be readily scaled up to the gram scale. Preliminary mechanistic studies clarified the proton source of the hydrazine products