摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

4-[3-(Hydroxymethyl)-5-(3-hydroxyprop-1-enyl)-7-methoxy-2,3-dihydro-1-benzofuran-2-yl]-2,6-dimethoxyphenol | 172702-55-5

中文名称
——
中文别名
——
英文名称
4-[3-(Hydroxymethyl)-5-(3-hydroxyprop-1-enyl)-7-methoxy-2,3-dihydro-1-benzofuran-2-yl]-2,6-dimethoxyphenol
英文别名
4-[3-(hydroxymethyl)-5-(3-hydroxyprop-1-enyl)-7-methoxy-2,3-dihydro-1-benzofuran-2-yl]-2,6-dimethoxyphenol
4-[3-(Hydroxymethyl)-5-(3-hydroxyprop-1-enyl)-7-methoxy-2,3-dihydro-1-benzofuran-2-yl]-2,6-dimethoxyphenol化学式
CAS
172702-55-5
化学式
C21H24O7
mdl
——
分子量
388.417
InChiKey
SGRRPSBKBJVKJE-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    1.9
  • 重原子数:
    28
  • 可旋转键数:
    7
  • 环数:
    3.0
  • sp3杂化的碳原子比例:
    0.33
  • 拓扑面积:
    97.6
  • 氢给体数:
    3
  • 氢受体数:
    7

反应信息

  • 作为产物:
    参考文献:
    名称:
    Arabidopsis peroxidase-catalyzed copolymerization of coniferyl and sinapyl alcohols: Kinetics of an endwise process
    摘要:
    In order to determine the mechanism of the earlier copolymerization steps of two main lignin precursors, sinapyl (S) alcohol and coniferyl (G) alcohol, microscale in vitro oxidations were carried out with a PRX34 Arabidopsis thaliana peroxidase in the presence of H2O2. This plant peroxidase was found to have an in vitro polymerization activity similar to the commonly used horseradish peroxidase. The selected polymerization conditions lead to a bulk polymerization mechanism when G alcohol was the only phenolic substrate available. In the same conditions, the presence of S alcohol at a 50/50 S/G molar ratio turned this bulk mechanism into an endwise one. A kinetics monitoring (size-exclusion chromatography and liquid chromatography-mass spectrometry) of the different species formed during the first 24 h oxidation of the S/G mixture allowed sequencing the bondings responsible for oligomerization. Whereas G homodimers and GS heterodimers exhibit low reactivity, the SS pinoresinol structure act as a nucleating site of the polymerization through an endwise process. This study is particularly relevant to understand the impact of S units on lignin structure in plants and to identify the key step at which this structure is programmed. (C) 2010 Elsevier Ltd. All rights reserved.
    DOI:
    10.1016/j.phytochem.2010.06.011
点击查看最新优质反应信息

文献信息

  • Arabidopsis peroxidase-catalyzed copolymerization of coniferyl and sinapyl alcohols: Kinetics of an endwise process
    作者:Nathalie Demont-Caulet、Catherine Lapierre、Lise Jouanin、Stéphanie Baumberger、Valérie Méchin
    DOI:10.1016/j.phytochem.2010.06.011
    日期:2010.10
    In order to determine the mechanism of the earlier copolymerization steps of two main lignin precursors, sinapyl (S) alcohol and coniferyl (G) alcohol, microscale in vitro oxidations were carried out with a PRX34 Arabidopsis thaliana peroxidase in the presence of H2O2. This plant peroxidase was found to have an in vitro polymerization activity similar to the commonly used horseradish peroxidase. The selected polymerization conditions lead to a bulk polymerization mechanism when G alcohol was the only phenolic substrate available. In the same conditions, the presence of S alcohol at a 50/50 S/G molar ratio turned this bulk mechanism into an endwise one. A kinetics monitoring (size-exclusion chromatography and liquid chromatography-mass spectrometry) of the different species formed during the first 24 h oxidation of the S/G mixture allowed sequencing the bondings responsible for oligomerization. Whereas G homodimers and GS heterodimers exhibit low reactivity, the SS pinoresinol structure act as a nucleating site of the polymerization through an endwise process. This study is particularly relevant to understand the impact of S units on lignin structure in plants and to identify the key step at which this structure is programmed. (C) 2010 Elsevier Ltd. All rights reserved.
查看更多