摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

bis(η-hexamethylbenzene)chromium(0) | 12156-66-0

中文名称
——
中文别名
——
英文名称
bis(η-hexamethylbenzene)chromium(0)
英文别名
bis(η6-hexamethylbenzene)chromium;Chromium;1,2,3,4,5,6-hexamethylbenzene;chromium;1,2,3,4,5,6-hexamethylbenzene
bis(η-hexamethylbenzene)chromium(0)化学式
CAS
12156-66-0
化学式
C24H36Cr
mdl
——
分子量
376.546
InChiKey
DEQICGUGLGTBOG-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    7.07
  • 重原子数:
    25
  • 可旋转键数:
    0
  • 环数:
    2.0
  • sp3杂化的碳原子比例:
    0.5
  • 拓扑面积:
    0
  • 氢给体数:
    0
  • 氢受体数:
    0

反应信息

  • 作为反应物:
    描述:
    bis(η-hexamethylbenzene)chromium(0) 在 O2 、 KI or NaB(C6H5)4 作用下, 以 为溶剂, 生成 bis(η-hexamethylbenzene)chromium(I)(1+)
    参考文献:
    名称:
    Li, Tomi Ting-Tung; Kung, Wei-Jen; Ward, Donald L., Organometallics, 1982, vol. 1, # 9, p. 1229 - 1235
    摘要:
    DOI:
  • 作为产物:
    描述:
    bis(η-hexamethylbenzene)chromium(I)(1+) 在 氢气 作用下, 生成 bis(η-hexamethylbenzene)chromium(0)
    参考文献:
    名称:
    Wilke, G.; Bogdanivic, B.; Borner, P., Angewandte Chemie, 1963, vol. 75, p. 10 - 20
    摘要:
    DOI:
点击查看最新优质反应信息

文献信息

  • Method for preparing organo-metallic compounds
    申请人:UNION CARBIDE CORP
    公开号:US02953586A1
    公开(公告)日:1960-09-20

    Catalysts comprising a transition element or its oxide on a support are prepared by adsorbing on the support either (a) a compound (Ar)2M, where M is the transition element and Ar either represents an aromatic hydrocarbon having a benzene ring with no double bond conjugated to the double bonds of the benzene ring either in a fused ring or a substituent group or represents an aryl substituted benzene, or (b) a salt of the cation (Ar)2M + or (Ar)2M + +, Ar and M being defined as above (see Group IV (b)), followed by thermal decomposition in an inert atmosphere to give the metal on the support or in air to give the oxide on the support. Any transition element including the lanthanides and actinides may be used, but metals of Group IVb, Vb and VIb and iron, ruthenium and osmium from Group VIII of the Periodic Table are particularly suitable. Temperatures of 80-400 DEG C. or higher may be used depending on the decomposition temperature. As inert atmospheres argon or krypton may be used. In an example, an aqueous solution of dibenzene molybdenum tetrachloroaluminate [(C6H6)2Mo] AlCl4 is mixed with diatomaceous earth, the complex being adsorbed. The solid is filtered and heated to the decomposition temperature in air to give a catalytically active mixture of molybdena on alumina.ALSO:The Specification comprises cations of the formula (Ar)2M(y+) and compounds of the formula (Ar)2M in which formul M represents a transition metal; Y represents the valency of the metal and is 1 or 2; and Ar represents a hydrocarbon containing an isolated benzene ring, defined as a benzene ring not having a double bond conjugated with the double bonds of the ring either in a ring fused to the benzene ring or in a substituent group, or represents an aryl substituted benzene. The cations (Ar)2 M(y+) may be prepared by reacting in the liquid phase under anhydrous conditions the hydrocarbon, a halide of the transition metal and an aluminium halide. If the transition metal is in a higher valence state in the halide than is desired in the cation product, a reducing agent is added to the reaction mixture, this agent is conveniently a metal above antimony and the transition metal in the electromotive series and may be powdered aluminium, zinc, magnesium, chromium, iron, or manganese or if the hydrocarbon used is itself a reducing agent, such as tetrahydronaphthalene, this may be used in excess and no other reducing agent added. Alternatively, triethyl aluminium may be used instead of an aluminium halide. Under the reaction conditions this reduces the transition metal and gives an aluminium halide. The reaction is carried out in an organic liquid which may be an excess of the hydrocarbon used in the reaction or an added inert diluent such as hexane, heptane, dodecane, cyclohexane or a paraffin gasoline fraction. Temperatures from - 30 DEG to 300 DEG C. can be used, slightly elevated temperatures being preferred to increase the rate of reaction without exceeding the decomposition temperature of the product and is preferably 40-150 DEG C. If a temperature above the boiling point of any liquid present is used, pressure must be applied to maintain the liquid phase. Absence of air is preferred, the reaction being performed under nitrogen, argon or krypton. The reactants are preferably maintained under the reaction conditions for at least 15 minutes, after which the product is cooled and hydrolysed, preferably in the absence of air, with, for example, methanol followed by water and, if desired, a base. This precipitates aluminium and excess transition metal as their hydroxides leaving the cation product in aqueous solution. The organic layer can be separated and discarded. The cation product can be precipitated as an insoluble salt, e.g. in the case of dibenzene chromium the iodide, perchlorate, picrate, tetraphenyl boron, Reineckate, or cyclopentadienyl tricarbonyl chromium. The compound (Ar)2M is prepared by reduction of the cation with sodium hyposulphite, hydroxylamine, hydrazine, hydroxy-methylene sulphinic acid, formamidine sulphinic acid, zinc and dilute acetic acid or aluminium and caustic alkali. The latter two methods can be employed where zinc or aluminium has been used as a reducing agent in the production of the cation merely by addition of dilute acetic acid or caustic alkali respectively, the second of these not being generally applicable since some cations such as (Ar)2Fe+ + are unstable in alkaline solution. This reaction too is carried out in an inert atmosphere. A layer of benzene or ether is added to the aqueous solution and then the reducing agent. The product is soluble in organic solvents and not water and passes into the organic layer from which it may be recovered by evaporation, and purified by sublimation under high vacuum. The compounds may be re-converted to the cationic form by oxidation, by adding water to a solution of the compound in an organic solvent and bubbling air or oxygen through. The cationic form appears in the aqueous phase. Any transition metal including the lanthanide and actinide series may be used, but the process is particularly well adapted to the production of compounds wherein the metal is an element of Group IVB, VB and VIB or iron, ruthenium or osmium. Metals of Group VIB, i.e. chromium, molybdenum and tungsten form particularly stable cations and compounds. Hydrocarbons which may be used include benzene, alkyl substituted benzenes, aralkyl substituted benzenes, indane, tetrahydronaphthalene, 9,10-dihydroanthracene, and allyl benzene and aryl benzenes such as diphenyl, phenylnaphthalene, phenylanthracene and phenylphenanthrene. The salts of the cations and the compounds can be thermally decomposed at temperatures above 400 DEG C. and this can be employed to produce coatings of the metal on objects for various purposes (see Groups II and III). Numerous examples are given.ALSO:A coating of a transition element on a metallic or non-metallic substrate may be obtained by the thermal decomposition preferably in an inert atmosphere of either (a) a compound of the formula (Ar)2M where M is the transition element and Ar represents an aromatic hydrocarbon having a benzene ring with no double bond conjugated with the double bonds of the benzene ring either in a fused ring or substituent group or represents an aryl substituted benzene or (b) a halide or otherother salt of the cation (Ar)2M + or (Ar)2M ++ where Ar and M are defined as above (see Group IV(b)). The compounds are all decomposed by temperatures of 400 DEG C. and may decompose below. The process is carried out in the absence of air and preferably in an inert atmosphere such as argon or krypton or by heating in a slow stream of hydrogen at 750-1000 DEG C. The metals which may be deposited include all the transition elements including the lanthonides and actinides. They may be deposited on glass, glass cloth or resin to form strip conductors or resistors for electrical purposes or in desired places on a substrate, by conventional methods, to form printed circuits. On metal substrates they enhance corrosion resistance and on glass cloth or asbestos provide decorative surfaces or designs. Metals may also be deposited on supports such as diatomaceous earth to give supported metal catalysts by impregnating the support with a solution of the compound and heating in an atmosphere of argon or krypton to 80-400 DEG C. This is particularly suitable for application to metals of Group IVB, VB, or VIB or iron, ruthenium or osmium. In examples, glass cloth and dibenzene chromium ((C6H6)2Cr) were sealed in an evacuated tube at 400 DEG C. for one hour. The resultant cloth was found to be electrically conducting. Dibenzene chromium was placed in a glass tube with some glass rings, small pieces of copper and a stainless steel wrench and the tube evacuated, sealed and heated at 380 DEG C. for 30 minutes. The inner surface of the tube and the objects therein were coated with chromium metal.

    催化剂由过渡元素或其氧化物与载体组成,通过在载体上吸附以下化合物之一(a)或(b)来制备:(a)化合物(Ar)2M,其中M为过渡元素,Ar代表芳香烃,具有苯环,没有双键共轭到苯环的双键,或者在融合环或取代基中代表芳基取代苯,或者(b)阳离子(Ar)2M +或(Ar)2M ++的盐,其中Ar和M如上所定义,然后在惰性气氛中进行热分解,以在载体上给出金属或在空气中给出氧化物。任何过渡元素,包括镧系和锕系元素,都可以使用,但IVb、Vb和VIb组以及周期表第VIII组的铁、钌和锇的金属特别适合。可以使用80-400摄氏度或更高的温度,具体取决于分解温度。惰性气氛可以使用氩气或氪气。例如,将二苯基钼四氯铝酸盐[(C6H6)2Mo] AlCl4的水溶液与硅藻土混合,然后将复合物吸附。将固体过滤并在空气中加热至分解温度,得到氧化铝上的催化活性钼混合物。 另外,规范包括公式(Ar)2M(y+)的阳离子和公式(Ar)2M的化合物,其中M代表过渡金属;Y代表金属的价,为1或2;Ar代表含有孤立苯环的碳氢化合物,定义为苯环没有双键共轭到环的双键,无论是在与苯环融合的环中还是在取代基中,或者代表芳基取代苯。阳离子(Ar)2M(y+)可以通过在无水条件下液相中反应碳氢化合物、过渡金属卤化物和铝卤化物来制备。如果过渡金属在卤化物中的价态比所需的阳离子产物中的价态高,可以向反应混合物中添加还原剂,这种还原剂通常是电动势系列中锑以上金属和过渡金属之一,例如粉末铝、锌、镁、铬、铁或锰,或者如果所使用的碳氢化合物本身是还原剂,如四氢萘,可以过量使用该还原剂,不需要添加其他还原剂。另外,三乙基铝也可以代替铝卤化物。在反应条件下,这将还原过渡金属并给出铝卤化物。反应在有机液体中进行,可以是反应中使用的碳氢化合物的过量或添加的惰性稀释剂,如己烷、庚烷、十二烷、环己烷或石蜡汽油馏分。可以使用-30摄氏度至300摄氏度的温度,略高的温度更好,以增加反应速率而不超过产物的分解温度,最好为40-150摄氏度。如果使用高于任何液体沸点的温度,必须施加压力以保持液相。最好在无氧条件下进行反应,例如在氮气、氩气或氪气下进行。最好将反应物在反应条件下至少保持15分钟,然后将产物冷却并水解,最好在无氧条件下,例如使用甲醇后接水,如果需要,再接一种碱。这将使铝和过量过渡金属沉淀为其氢氧化物,将阳离子产物留在水溶液中。有机层可以分离并丢弃。阳离子产物可以沉淀为不溶盐,例如二苯基铬的碘化物、高氯酸盐、偶氮酸盐、四苯硼酸盐、Reineckate或环戊二烯基三羰基铬。化合物(Ar)2M通过与亚硫酸氢钠、羟胺、叠氮、羟甲基亚磺酸、甲酰胺亚磺酸、锌和稀醋酸或铝和氢氧化碱还原阳离子制备。这两种方法可以在生产阳离子时使用锌或铝作为还原剂,只需加入稀醋酸或氢氧化碱,其中后者通常不适用,因为一些阳离子,如(Ar)2Fe++在碱性溶液中不稳定。这个反应也在惰性气氛中进行。向水溶液中加入苯或醚层,然后加入还原剂。产物在有机溶剂中可溶,不溶于水,并从中转移到有机层,可以通过蒸发回收,并在高真空下升华纯化。这些化合物可以通过氧化重新转化为阳离子形式,方法是向有机溶剂中的化合物溶液中加水,并通过通气或通氧气使之氧化。阳离子形式出现在水相中。任何过渡金属,包括镧系和锕系元素系列,都可以使用,但该过程特别适用于金属为IVB、VB和VIB组元素或铁、钌或锇的化合物的生产。VIB组的金属,即铬、钼和钨形成特别稳定的阳离子和化合物。可使用的碳氢化合物包括苯、烷基取代苯、芳基烷基取代苯、茚、四氢萘、9,10-二氢蒽、烯丙基苯和二苯基苯等芳基苯。阳离子和化合物的盐可以在400摄氏度以上的温度下热分解,可用于在各种目的的物体上生产金属涂层(见II和III组)。给出了许多示例。另外,过渡元素在金属或非金属基底上的涂层可以通过以下两种方式之一在惰性气氛中进行热分解获得:(a)化合物(Ar)2M的热分解,其中M为过渡元素,Ar代表芳香烃,具有苯环,没有双键共轭到苯环的双键,要么在融合环中,要么在取代基中代表芳基取代苯,要么(b)阳离子(Ar)2M +或(Ar)2M ++的卤化物或其他盐的热分解,其中Ar和M如上所定义。所有这些化合物都可以在400摄氏度的温度下分解,也可能在更低温度下分解。该过程在无氧条件下进行,最好在惰性气氛中进行,例如氩气或氪气,或者在750-1000摄氏度的慢氢气流中加热。可以沉积的金属包括所有过渡元素,包括镧系和锕系元素。它们可以沉积在玻璃、玻璃布或树脂上,以形成用于电气目的的导条或电阻器,或者通过常规方法在基底的所需位置形成印刷电路。在金属基底上,它们增强了耐蚀性,在玻璃布或石棉上提供装饰表面或设计。金属也可以沉积在硅藻土等载体上,通过用化合物溶液浸渍载体并在氩气或氪气中加热至80-400摄氏度来给出支持的金属催化剂。这对于应用于IVB、VB或VIB组的金属或铁、钌或锇特别适用。例如,玻璃布和二苯基铬((C6H6)2Cr)在400摄氏度的真空管中密封一个小时。结果布料发现具有导电性。将二苯基铬放入一个玻璃管中,加入一些玻璃环、小块铜和一把不锈钢扳手,将管子抽真空,密封并在380摄氏度加热30分钟。管子的内表面和其中的物体被镀上铬金属。
  • Ferromagnetically coupled linear electron-transfer complexes. Structural and magnetic characterization of [Cr(.eta.6-C6MexH6-x)2][TCNE] (x = 0,3,6) and S = 0 [TCNE]22-
    作者:Joel S. Miller、Dermot M. O'Hare、Animesh Chakraborty、Arthur J. Epstein
    DOI:10.1021/ja00202a028
    日期:1989.9
    The reaction of Crsup 0}(Csub 6}Mesub x}Hsub 6-x})sub 2} (x = 0, 3, 6), D, with TCNE, A, results in formation of 1:1 electron-transfer salts of (Crsup 1}(Csub 6}Mesub x}Hsub 6-x})sub 2})(TCNE) (x = 0, 3, 6) composition. The x = 0 and 3 complexes have been structurally characterized. The magnetic susceptibility between 2 and 320 K for these (TCNE)sub 2}sup 2minus}} complexes can be fit
    Crsup 0}(Csub 6}Mesub x}Hsub 6-x})sub 2} (x = 0, 3, 6), D 与 TCNE, A 的反应导致(Crsup 1}(Csub 6}Mesub x}Hsub 6-x})sub 2})(TCNE) (x = 0, 3, 6)组成。x = 0 和 3 复合物已在结构上表征。这些 (TCNE)sub 2}sup 2minus}} 复合物的磁化率在 2 和 320 K 之间可以通过居里-魏斯定律拟合,chi} = C/(T-theta}),对于每个自旋重复单元一个独立的。来自下一个最高占据分子轨道的电荷转移激发与该系统铁磁耦合的稳定性是一致的。因此,具有sup 2}A 基态的其他分子/有机系统可能是块状铁磁体的合适组件。
  • Fullerene complexes with bis(η6-hexamethylbenzene)chromium, hexamethylbenzene, and hexaethylbenzene
    作者:G. A. Domrachev、Yu. A. Shevelev、V. K. Cherkasov、G. K. Fukin、G. V. Markin、A. I. Kirillov
    DOI:10.1007/s11172-006-0242-y
    日期:2006.2
    The [60]fulleride of bis(η-hexamethylbenzene)chromium(I) [(η6-C6Me6)2Cr]⋅+[C60]⋅−, and the complexes C60·C6Me6 and C60·C6Et6 were synthesized. Thermal decomposition of [(η6-C6Me6)2Cr]⋅+[C60]⋅− was studied. The molecular structures of C60·C6Me6 and C60·C6Et6 were determined.
    合成了双(η-六甲基苯)铬(I)[(η6-C6Me6)2Cr]⋅+[C60]⋅-的[60]富勒烯化合物,以及C60·C6Me6和C60·C6Et6配合物。研究了 [(η6-C6Me6)2Cr]⋅+[C60]⋅− 的热分解。确定了C60·C6Me6和C60·C6Et6的分子结构。
  • Markle, Richard J.; Pettijohn, Ted M.; Lagowski, Organometallics, 1985, vol. 4, # 9, p. 1529 - 1531
    作者:Markle, Richard J.、Pettijohn, Ted M.、Lagowski
    DOI:——
    日期:——
  • Gmelin Handbuch der Anorganischen Chemie, Gmelin Handbook: Cr: Org.Verb., 1.6.2.1.4, page 352 - 355
    作者:
    DOI:——
    日期:——
查看更多

同类化合物

(βS)-β-氨基-4-(4-羟基苯氧基)-3,5-二碘苯甲丙醇 (S)-(-)-7'-〔4(S)-(苄基)恶唑-2-基]-7-二(3,5-二-叔丁基苯基)膦基-2,2',3,3'-四氢-1,1-螺二氢茚 (S)-盐酸沙丁胺醇 (S)-3-(叔丁基)-4-(2,6-二甲氧基苯基)-2,3-二氢苯并[d][1,3]氧磷杂环戊二烯 (S)-2,2'-双[双(3,5-三氟甲基苯基)膦基]-4,4',6,6'-四甲氧基联苯 (S)-1-[3,5-双(三氟甲基)苯基]-3-[1-(二甲基氨基)-3-甲基丁烷-2-基]硫脲 (R)富马酸托特罗定 (R)-(-)-盐酸尼古地平 (R)-(+)-7-双(3,5-二叔丁基苯基)膦基7''-[((6-甲基吡啶-2-基甲基)氨基]-2,2'',3,3''-四氢-1,1''-螺双茚满 (R)-3-(叔丁基)-4-(2,6-二苯氧基苯基)-2,3-二氢苯并[d][1,3]氧杂磷杂环戊烯 (R)-2-[((二苯基膦基)甲基]吡咯烷 (N-(4-甲氧基苯基)-N-甲基-3-(1-哌啶基)丙-2-烯酰胺) (5-溴-2-羟基苯基)-4-氯苯甲酮 (5-溴-2-氯苯基)(4-羟基苯基)甲酮 (5-氧代-3-苯基-2,5-二氢-1,2,3,4-oxatriazol-3-鎓) (4S,5R)-4-甲基-5-苯基-1,2,3-氧代噻唑烷-2,2-二氧化物-3-羧酸叔丁酯 (4-溴苯基)-[2-氟-4-[6-[甲基(丙-2-烯基)氨基]己氧基]苯基]甲酮 (4-丁氧基苯甲基)三苯基溴化磷 (3aR,8aR)-(-)-4,4,8,8-四(3,5-二甲基苯基)四氢-2,2-二甲基-6-苯基-1,3-二氧戊环[4,5-e]二恶唑磷 (2Z)-3-[[(4-氯苯基)氨基]-2-氰基丙烯酸乙酯 (2S,3S,5S)-5-(叔丁氧基甲酰氨基)-2-(N-5-噻唑基-甲氧羰基)氨基-1,6-二苯基-3-羟基己烷 (2S,2''S,3S,3''S)-3,3''-二叔丁基-4,4''-双(2,6-二甲氧基苯基)-2,2'',3,3''-四氢-2,2''-联苯并[d][1,3]氧杂磷杂戊环 (2S)-(-)-2-{[[[[3,5-双(氟代甲基)苯基]氨基]硫代甲基]氨基}-N-(二苯基甲基)-N,3,3-三甲基丁酰胺 (2S)-2-[[[[[[((1R,2R)-2-氨基环己基]氨基]硫代甲基]氨基]-N-(二苯甲基)-N,3,3-三甲基丁酰胺 (2-硝基苯基)磷酸三酰胺 (2,6-二氯苯基)乙酰氯 (2,3-二甲氧基-5-甲基苯基)硼酸 (1S,2S,3S,5S)-5-叠氮基-3-(苯基甲氧基)-2-[(苯基甲氧基)甲基]环戊醇 (1-(4-氟苯基)环丙基)甲胺盐酸盐 (1-(3-溴苯基)环丁基)甲胺盐酸盐 (1-(2-氯苯基)环丁基)甲胺盐酸盐 (1-(2-氟苯基)环丙基)甲胺盐酸盐 (-)-去甲基西布曲明 龙胆酸钠 龙胆酸叔丁酯 龙胆酸 龙胆紫 龙胆紫 齐达帕胺 齐诺康唑 齐洛呋胺 齐墩果-12-烯[2,3-c][1,2,5]恶二唑-28-酸苯甲酯 齐培丙醇 齐咪苯 齐仑太尔 黑染料 黄酮,5-氨基-6-羟基-(5CI) 黄酮,6-氨基-3-羟基-(6CI) 黄蜡,合成物 黄草灵钾盐