摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

(2-(furan-2-yl)-1,3-dioxolan-4-yl)methanol | 1007220-61-2

中文名称
——
中文别名
——
英文名称
(2-(furan-2-yl)-1,3-dioxolan-4-yl)methanol
英文别名
{2-[5-(hydroxymethyl)furan-2-yl]-1,3-dioxolan-4-yl}methanol;(5-(4-(hydroxymethyl)-1,3-dioxolan-2-yl)furan-2-yl)methanol;5-hydroxymethylfurfural-glycerin acetal;[2-[5-(Hydroxymethyl)furan-2-yl]-1,3-dioxolan-4-yl]methanol;[2-[5-(hydroxymethyl)furan-2-yl]-1,3-dioxolan-4-yl]methanol
(2-(furan-2-yl)-1,3-dioxolan-4-yl)methanol化学式
CAS
1007220-61-2
化学式
C9H12O5
mdl
——
分子量
200.191
InChiKey
PUBKOBRKTAZFLA-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 沸点:
    380.0±37.0 °C(Predicted)
  • 密度:
    1.333±0.06 g/cm3(Predicted)

计算性质

  • 辛醇/水分配系数(LogP):
    -1
  • 重原子数:
    14
  • 可旋转键数:
    3
  • 环数:
    2.0
  • sp3杂化的碳原子比例:
    0.56
  • 拓扑面积:
    72.1
  • 氢给体数:
    2
  • 氢受体数:
    5

反应信息

  • 作为产物:
    描述:
    5-羟甲基糠醛甘油 在 sulfonic acid functionalized poly[(styrene)-co-(20 mol% 1,4-bis(4-vinylphenoxy)benzene)] macroreticular MR-SP resin 作用下, 反应 4.0h, 生成 (2-(furan-2-yl)-1,3-dioxolan-4-yl)methanol
    参考文献:
    名称:
    甘油增值:开发通过定制的大网状酸树脂生产缩醛的选择性方案
    摘要:
    生物基甘油和醛已通过缩醛化反应在新型大孔磺化聚苯乙烯型树脂(MR-SP20-SO 3 H 和 MR-SP50-SO 3 H)上获得价值。研究了反应物摩尔比、催化剂用量、温度和反应时间对缩醛活性和选择性的影响。结果表明,MR-SP20-SO 3 H 和 MR-SP50-SO 3 H 证实了在甘油衍生物 1,2-丙二醇、1,3-丙二醇、3-甲氧基-1,2-丙二醇的缩醛化中的高性能和单醋精;这些催化系统可实现回收和再利用。
    DOI:
    10.1016/j.cattod.2022.08.018
点击查看最新优质反应信息

文献信息

  • Design of highly efficient Mo and W-promoted SnO<sub>2</sub>solid acids for heterogeneous catalysis: acetalization of bio-glycerol
    作者:Baithy Mallesham、Putla Sudarsanam、Gangadhara Raju、Benjaram M. Reddy
    DOI:10.1039/c2gc36152c
    日期:——
    Development of highly promising solid acids is one of the key technologies to meet the essential challenges of economical and environmental concerns. Thus, novel molybdenum and tungsten promoted SnO2 solid acids (wet-impregnation) and pure SnO2 (fusion method) were prepared. The synthesized catalysts were systematically analyzed using various techniques, namely, XRD, BET surface area, pore size distribution, XPS, FTIR, FTIR of adsorbed pyridine, Raman, NH3-TPD, and H2-TPR. XRD results suggested formation of nanocrystalline SnO2 solid solutions due to the incorporation of molybdenum and tungsten cations into the SnO2 lattice. All the materials exhibited smaller crystallite size, remarkable porosity, and high specific surface area. Raman measurements suggested the formation of more oxygen vacancy defects in the doped catalysts, and the TPR results confirmed facile reduction of the doped SnO2. NH3-TPD studies revealed the beneficial role of molybdenum and tungsten oxides on the acidic properties of the SnO2. FTIR studies of adsorbed pyridine showed the existence of a larger number of Brønsted acidic sites compared to Lewis acidic sites in the prepared catalysts. The resulting catalysts are found to be efficient solid acids for acetalization of glycerol with acetone, furfural, and its derivatives under solvent-free and ambient temperature conditions. Particularly, the Mo6+-doped SnO2 catalyst exhibited excellent catalytic performance in terms of both glycerol conversion and selectivity of the products. The increased presence of acidic sites and enhanced specific surface area, accompanied by notable redox properties and superior lattice defects are found to be the decisive factors for better catalytic activity of the Mo6+-doped SnO2 sample. The investigated SnO2 solid acids represent a novel class of heterogeneous catalysts useful for the transformation of glycerol to value-added products in an eco-friendly manner.
    开发高潜力的固体酸是应对经济和环境挑战的关键技术之一。因此,制备了新型的钼和钨促进的SnO2固体酸(湿浸法)以及纯SnO2(熔融法)。合成的催化剂采用多种技术系统性分析,包括XRD、BET比表面积、孔径分布、XPS、FTIR、吸附吡啶的FTIR、拉曼光谱、NH3-TPD和H2-TPR。XRD结果表明,钼和钨阳离子掺入SnO2晶格中形成了纳米晶体SnO2固溶体。所有材料都表现出较小的晶体尺寸、显著的孔隙率和高比表面积。拉曼光谱测量表明,掺杂催化剂中形成了更多的氧缺陷,TPR结果证实了掺杂SnO2的易还原性。NH3-TPD研究揭示了钼和钨氧化物对SnO2酸性特性的有益作用。吸附吡啶的FTIR研究显示,与路易斯酸性位点相比,所制备催化剂中布朗斯特酸性位点的数量更多。所得催化剂被发现是高效的固体酸,能够在无溶剂和常温条件下,将甘油与丙酮、呋喃醛及其衍生物进行缩醛化。特别是,Mo6+掺杂的SnO2催化剂在甘油转化率和产物选择性方面展现出优异的催化性能。酸性位点的增加和比表面积的提升,以及显著的红氧还原特性和优越的晶格缺陷被认为是Mo6+掺杂的SnO2样品具有较好催化活性的决定性因素。所研究的SnO2固体酸代表了一类新型的异相催化剂,适用于以环保方式将甘油转化为增值产品。
  • Eco-friendly synthesis of bio-additive fuels from renewable glycerol using nanocrystalline SnO2-based solid acids
    作者:Baithy Mallesham、Putla Sudarsanam、Benjaram M. Reddy
    DOI:10.1039/c3cy00825h
    日期:——
    sites than Lewis acidic sites in the synthesized catalysts. Promoted SnO2 catalysts exhibited a promising catalytic performance for glycerol acetalization with acetone and furfural, and the activity of the catalysts was found to increase in the following order: SnO2 < WO3/SnO2 < MoO3/SnO2 < SO42−/SnO2. The outstanding performance of the SO42−/SnO2 catalyst is mainly due to the existence of a large amount
    进行本工作的目的是使用基于SnO 2的固体酸由甘油缩醛化来合成有价值的生物添加剂燃料。使用湿浸渍法将各种促进剂,即SO 4 2-,MoO 3和WO 3引入到SnO 2中。通过XRD,BET表面积,BJH分析,FT-IR,吡啶吸附的FT-IR,NH 3 -TPD,ICP-OES和XPS技术已经实现了广泛的理化表征。加入WO 3,MoO后,SnO 2的BET表面积从11分别显着提高到32、56和41 m 2 g -1。3和SO 4 2-启动子。XPS研究表明,在制备的样品中,Sn以+4氧化态存在,而Mo,W和S以+6氧化态存在。此外,SO 4 2- / SnO 2样品还包含超酸性部位,以及强酸性和中酸性部位。对于SnO 2,WO 3 / SnO 2,MoO 3 / SnO 2和SO 4 2- / SnO 2,酸性部位的量为46.47、61.81、81.45和186.98μmolg -1。样本。
  • One-Pot Synthesis of Biomass-Derived Surfactants by Reacting Hydroxymethylfurfural, Glycerol, and Fatty Alcohols on Solid Acid Catalysts
    作者:Andrea Garcia-Ortiz、Karen S. Arias、Maria J. Climent、Avelino Corma、Sara Iborra
    DOI:10.1002/cssc.201801132
    日期:2018.9.11
    A new type of biomass‐derived non‐ionic surfactants has been obtained by reacting hydroxymethylfurfural (HMF), glycerol, and fatty alcohols. For instance, 5‐(octyloxymethyl)furfural glyceryl acetal can be obtained in a one‐pot process by etherification of HMF with fatty alcohols followed by acetalization with glycerol. For a successful solid catalyst, acidity and polarity have to be optimized to improve
    通过使羟甲基糠醛(HMF),甘油和脂肪醇反应,获得了一种新型的源自生物质的非离子表面活性剂。例如,通过将HMF与脂肪醇醚化,然后与甘油缩醛化,可以通过一锅法获得5-(辛氧基甲氧基)糠醛甘油缩醛。对于成功的固体催化剂,由于反应物分子的不同吸附特性,必须优化酸度和极性以改善转化率,选择性和催化剂失活。因此,当处理这些生物质衍生物,包括高极性反应物如甘油时,具有高Si ​​/ Al比和实际上没有连通性缺陷的β沸石显示出良好的结果。
  • Acetalization of glycerol with ketones and aldehydes catalyzed by high silica Hβ zeolite
    作者:Sharmin Sultana Poly、Md.A.R. Jamil、Abeda S. Touchy、Shunsaku Yasumura、S.M.A. Hakim Siddiki、Takashi Toyao、Zen Maeno、Ken-ichi Shimizu
    DOI:10.1016/j.mcat.2019.110608
    日期:2019.12
    In this work, proton-exchanged *BEA zeolite with a high Si/Al ratio of 75 (Hβ-75), was demonstrated as an effective catalyst for the acetalization of glycerol with carbonyl compounds. This catalyst system was applicable to various substrates and reusable for at least 4 times with slight decrease in activity. The turnover frequency, based on acid site concentration, increased as a function of Hβ Si/Al
    在这项工作中,具有高Si ​​/ Al比75(Hβ-75)的质子交换* BEA沸石被证明是甘油与羰基化合物缩醛化的有效催化剂。该催化剂体系适用于各种底物,可重复使用至少4次,但活性略有下降。基于酸位点浓度的周转频率作为HβSi / Al比的函数而增加,表明沸石疏水表面性能的重要性。基于动力学研究,疏水性和酸性位点浓度,定量讨论了Hβ-75所表现出的高效率的起源。
  • HMF–glycerol acetals as additives for the debonding of polyurethane adhesives
    作者:Sarah Kirchhecker、Andrea Dell'Acqua、Astrid Angenvoort、Anke Spannenberg、Kenji Ito、Sergey Tin、Andreas Taden、Johannes G. de Vries
    DOI:10.1039/d0gc04093b
    日期:——

    Diols prepared via acetalisation of HMF with glycerol were incorporated into polyurethanes. This additive enables the selective debonding by acid-catalysed hydrolysis of PU-based adhesives to facilitate the recycling of components at the end of life of the product.

    通过将HMF与甘油进行缩醛化反应制备的二元醇被纳入聚氨酯中。这种添加剂能够通过酸催化水解聚氨酯基粘合剂来实现选择性解除粘合,以便在产品寿命结束时方便组件的回收利用。
查看更多

同类化合物

顺式-2-甲基-4-叔-丁基-1,3-二氧戊环 辛醛丙二醇缩醛 碘丙甘油 甜瓜醛丙二醇缩醛 甘油缩甲醛 甘油缩甲醛 环辛基甲醛乙烯缩醛 环戊二烯内过氧化物 环己丙胺,1-(1,3-二噁戊环-2-基)- 环丙羧酸,2-乙酰基-,甲基酯,(1R-顺)-(9CI) 氯乙醛缩乙二醇 柠檬醛乙二醇缩醛 异戊醛丙二醇缩醛 异丁醛-丙二醇缩醛 奥普碘铵 多米奥醇 多效缩醛 壬醛丙二醇缩醛 亲和素 二氰苯乙烯酮乙烯缩醛 乙酮,1-(2-环辛烯-1-基)-,(-)-(9CI) 乙基1,3-二氧戊环-4-羧酸酯 丙炔醛乙二醇缩醛 三甲基-[(2-甲基-1,3-二氧戊环-4-基)甲基]铵碘化物 三丁基(1,3-二恶烷-2-基甲基)溴化鏻 [2-(2-碘乙基)-1,3-二氧戊环-4-基]甲醇 6,8-二氧杂二螺[2.1.4.2]十一烷 6,7-二氧杂双环[3.2.1]辛-2-烯-8-羧酸 5H,8H-呋喃并[3,4:1,5]环戊二烯并[1,2-d]-1,3-二噁唑(9CI) 5-过氧化氢基-5-甲基-1,2-二恶烷-3-酮 5-嘧啶羧酸,4-(2-呋喃基)-1,2,3,4-四氢-6-甲基-2-羰基-,1-甲基乙基酯 5-(哌嗪-1-基)苯并呋喃-2-甲酰胺 5-(1,3-二氧杂烷-2-基)呋喃-2-磺酰氯 5-(1,3-二氧戊环-2-基)戊腈 5,5-二羟基戊醛 4a-乙基-2,4a,5,6,7,7a-六氢-4-(3-羟基苯基)-1-甲基-1H-1-吡喃并英并啶 4-甲基-2-戊基-1,3-二氧戊环 4-甲基-2-十一烷基-1,3-二氧戊环 4-甲基-2-[(1E)-1-戊烯-1-基]-1,3-二氧戊环 4-甲基-2-(三氯甲基)-1,3-二氧戊环 4-甲基-2-(2-(甲硫基)乙基)-1,3-二氧戊环 4-甲基-2-(1-丙烯基)-1,3-二氧戊环 4-甲基-1,3-二氧戊环 4-烯丙基-4-甲基-2-乙烯基-1,3-二氧戊环 4-溴-3,5,5-三甲基二氧戊环-3-醇 4-乙基-1,3-二氧戊环 4-丁基-1,3-二氧戊环 4-[1,3]二氧烷-2-亚甲基丁醛 4-(氯甲基)-2-十七烷基-1,3-二氧戊环 4-(氯甲基)-2-(2-呋喃基)-1,3-二氧戊环