Base-Free Hiyama Coupling Reaction via a Group 10 Metal Fluoride Intermediate Generated by C–F Bond Activation
摘要:
A Pd(0)-catalyzed Hiyama coupling reaction of tetrafluoroethylene (TFE) proceeded without the use of a base to give alpha,beta,beta-trifluorostyrene derivatives. A Ni(0)-catalyzed Hiyama coupling reaction of perfluoroarenes also occurred without a base. The key intermediate in these reactions would be a transition-metal fluoride complex that is generated in situ by the oxidative addition of a C-F bond.
Pd-catalyzed cross-coupling reactions of various arenediazoniumsalts with ArSi(OR)3 and KArBF3 have been achieved in good to excellent yields under simple aerobic conditions in water at room temperature. The functional group tolerance makes these transformations as attractive alternatives to the traditional cross-coupling approaches. Furthermore, the sequence can also be performed in a one-pot domino
Palladium-catalyzed Hiyama-type cross-coupling reactions of various arenesulfinates with organosilanes were achieved in good to excellent yields under aerobic conditions at 70 °C. Fluoride is essential, and tetrabutylammonium fluoride (TBAF) was shown to be the most efficient additive for these cross-coupling reactions. These cross-coupling reactions of the arenesulfinates provide high yields and show
Palladium acetate [Pd(OAc)2]-catalyzed Hiyama cross-coupling of arenediazoniumsalts with organosilanes was found to generate biaryl products in high yields in alcoholic solutions. The simple and efficient protocol does not require any bases, ligands, or air/moisture. The transformation can tolerate either electron-donating or electron-withdrawing functional groups. Theoretical studies show that the
We describe herein a regioselective palladium(II)-catalyzedintermolecularhydroarylation of unactivated aliphatic alkenes with electronically and sterically diverse (hetero)arylsilanes under redox-neutral conditions. A removable bidentate 8-aminoquinoline auxiliary was readily employed to dictate the regioselectivity, prevent β-hydride elimination, and facilitate protodepalladation. This silicon-based