摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

4-methyl-N-(3-nitrophenyl)-benzamide | 33802-08-3

中文名称
——
中文别名
——
英文名称
4-methyl-N-(3-nitrophenyl)-benzamide
英文别名
Benzamide, N-(3-nitrophenyl)-4-methyl-;4-methyl-N-(3-nitrophenyl)benzamide
4-methyl-N-(3-nitrophenyl)-benzamide化学式
CAS
33802-08-3
化学式
C14H12N2O3
mdl
——
分子量
256.261
InChiKey
REINFTHVGGYWAX-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 保留指数:
    2556

计算性质

  • 辛醇/水分配系数(LogP):
    3.5
  • 重原子数:
    19
  • 可旋转键数:
    2
  • 环数:
    2.0
  • sp3杂化的碳原子比例:
    0.07
  • 拓扑面积:
    74.9
  • 氢给体数:
    1
  • 氢受体数:
    3

上下游信息

  • 下游产品
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    4-methyl-N-(3-nitrophenyl)-benzamide 在 sodium tetrahydroborate 作用下, 以 甲醇二氯甲烷 为溶剂, 反应 3.0h, 生成 N-(3-氨基苯基)-4-甲基苯甲酰胺
    参考文献:
    名称:
    Potent and selective inhibitors of the TASK-1 potassium channel through chemical optimization of a bis-amide scaffold
    摘要:
    TASK-1 is a two-pore domain potassium channel that is important to modulating cell excitability, most notably in the context of neuronal pathways. In order to leverage TASK-1 for therapeutic benefit, its physiological role needs better characterization; however, designing selective inhibitors that avoid the closely related TASK-3 channel has been challenging. In this study, a series of bis-amide derived compounds were found to demonstrate improved TASK-1 selectivity over TASK-3 compared to reported inhibitors. Optimization of a marginally selective hit led to analog 35 which displays a TASK-1 IC50=16 nM with 62-fold selectivity over TASK-3 in an orthogonal electrophysiology assay.
    DOI:
    10.1016/j.bmcl.2014.06.032
  • 作为产物:
    描述:
    对甲基苯甲酰氯 在 lithium selenide 作用下, 以 四氢呋喃 为溶剂, 反应 16.5h, 生成 4-methyl-N-(3-nitrophenyl)-benzamide
    参考文献:
    名称:
    一锅式合成酰胺和衍生物的无痕硒代羧酸盐
    摘要:
    我们最近报道了使用硒代羧酸盐作为无痕迹试剂的一锅法合成糖基酰胺的方法。在本文中,我们提出硒羧酸叠氮化物反应在更宽范围的底物(包括杂环系统和脂肪酸)上形成酰胺键的进一步应用。事实证明,该方法对于合成伯酰胺和仲酰胺,磺酰胺,酰亚胺,磷酰胺以及氨基甲酸酯非常有效。
    DOI:
    10.1016/j.tet.2020.131834
点击查看最新优质反应信息

文献信息

  • SnCl2 Catalyzed Direct Synthesis of Pyrroles under Aqueous Conditions
    作者:D. Tejeswararao、B. Srikanth
    DOI:10.14233/ajchem.2020.22454
    日期:2020.3.10

    Synthetic substituted pyrroles are related with interesting biological activities, yet they remain inadequately explored within drug discovery. Late years have seen a growing interest in synthetic approaches that can provide access to structurally novel pyrroles so that the biological usefulness of this compound class can be more fully investigated. Herein, an efficient and versatile practical protocol for the pyrroles using stannous(II) chloride dihydrate as catalyst is described under aqueous conditions at 55 ºC in high yields. Also, this method is applicable for the preparation of diversity and oriented pyrrole derivatives.

    合成取代吡咯与有趣的生物活性有关,但在药物发现领域仍未得到充分探索。近年来,人们对能够提供结构新颖的吡咯的合成方法越来越感兴趣,以便更全面地研究这一化合物类的生物用途。在这里,描述了一种高效且多功能的吡咯实用方案,使用二水合氯化亚锡(II)作为催化剂,在55摄氏度的水性条件下,产率高。此外,这种方法适用于制备多样性和定向的吡咯衍生物。
  • Addition of Organostannanes to Isocyanate Catalyzed by a Rhodium Complex
    作者:Tooru Koike、Masabumi Takahashi、Nobumichi Arai、Atsunori Mori
    DOI:10.1246/cl.2004.1364
    日期:2004.10
    Arylstannanes add to isocyanate in the presence of a rhodium catalyst to afford amides in good to excellent yields. Use of a phenol derivative as an additive is found to play an essential role for the successful reaction.
    在铑催化剂的存在下,芳基锡烷加到异氰酸酯中,以良好到极好的收率提供酰胺。发现使用苯酚衍生物作为添加剂对于成功的反应起着至关重要的作用。
  • Elaborate ligand-based pharmacophore exploration and QSAR analysis guide the synthesis of novel pyridinium-based potent β-secretase inhibitory leads
    作者:Afaf Al-Nadaf、Ghassan Abu Sheikha、Mutasem O. Taha
    DOI:10.1016/j.bmc.2010.03.043
    日期:2010.5
    beta-Secretase (BACE) inhibitors have potential as anti-Alzheimer's disease treatments prompting us to explore the pharmacophoric space of 129 known BACE inhibitors. QSAR analysis was employed to select optimal combination of pharmacophoric models and 2D physicochemical descriptors capable of explaining bioactivity variation (r(2) = 0.88, F = 60.48, r(LOO)(2) = 0.85, r(PRESS)(2) against 25 external test inhibitors = 0.71). We were obliged to use ligand efficiency as the response variable because the logarithmic transformation of bioactivities failed to access self-consistent QSAR models. Three pharmacophoric models emerged in the successful QSAR equation suggesting at least three binding modes accessible to ligands within BACE binding pocket. QSAR equation and pharmacophoric models were validated through ROC curves and were employed to guide synthesis of novel pyridinium-based BACE inhibitors. The best inhibitor illustrated an IC50 value of 1.0 mu M against BACE. (c) 2010 Elsevier Ltd. All rights reserved.
  • Takatori, Yakugaku Zasshi/Journal of the Pharmaceutical Society of Japan, 1953, vol. 73, p. 810,811
    作者:Takatori
    DOI:——
    日期:——
  • Design, synthesis and structure–activity relationship of new HSL inhibitors guided by pharmacophore models
    作者:Jumana D. Al-Shawabkeh、Afaf H. Al-Nadaf、Lina A. Dahabiyeh、Mutasem O. Taha
    DOI:10.1007/s00044-013-0616-2
    日期:2014.1
    Hormone-sensitive lipase (HSL) is a critical enzyme involved in the hormonally regulated release of fatty acids and glycerol from adipocyte lipid stores. Its inhibition may improve insulin sensitivity and blood glucose handling in type 2 diabetes. Accordingly, many small-molecule HSL inhibitors have recently been identified. In continuation of our efforts for discovery of new HSL inhibitors, we prepared a variety of esters, amides, sulfonamides and sulfonate esters capable of fitting two pharmacophore models that we developed and published earlier. The tested compounds were synthesized via coupling reactions of aroyl chlorides or sulfonyl chlorides with phenols, amines and related derivatives. Our efforts led to the identification of interesting compounds of low micromolar anti-HSL bioactivities, which have potential to be developed into effective antidiabetic agents.
查看更多

同类化合物

(βS)-β-氨基-4-(4-羟基苯氧基)-3,5-二碘苯甲丙醇 (S)-(-)-7'-〔4(S)-(苄基)恶唑-2-基]-7-二(3,5-二-叔丁基苯基)膦基-2,2',3,3'-四氢-1,1-螺二氢茚 (S)-盐酸沙丁胺醇 (S)-3-(叔丁基)-4-(2,6-二甲氧基苯基)-2,3-二氢苯并[d][1,3]氧磷杂环戊二烯 (S)-2,2'-双[双(3,5-三氟甲基苯基)膦基]-4,4',6,6'-四甲氧基联苯 (S)-1-[3,5-双(三氟甲基)苯基]-3-[1-(二甲基氨基)-3-甲基丁烷-2-基]硫脲 (R)富马酸托特罗定 (R)-(-)-盐酸尼古地平 (R)-(+)-7-双(3,5-二叔丁基苯基)膦基7''-[((6-甲基吡啶-2-基甲基)氨基]-2,2'',3,3''-四氢-1,1''-螺双茚满 (R)-3-(叔丁基)-4-(2,6-二苯氧基苯基)-2,3-二氢苯并[d][1,3]氧杂磷杂环戊烯 (R)-2-[((二苯基膦基)甲基]吡咯烷 (N-(4-甲氧基苯基)-N-甲基-3-(1-哌啶基)丙-2-烯酰胺) (5-溴-2-羟基苯基)-4-氯苯甲酮 (5-溴-2-氯苯基)(4-羟基苯基)甲酮 (5-氧代-3-苯基-2,5-二氢-1,2,3,4-oxatriazol-3-鎓) (4S,5R)-4-甲基-5-苯基-1,2,3-氧代噻唑烷-2,2-二氧化物-3-羧酸叔丁酯 (4-溴苯基)-[2-氟-4-[6-[甲基(丙-2-烯基)氨基]己氧基]苯基]甲酮 (4-丁氧基苯甲基)三苯基溴化磷 (3aR,8aR)-(-)-4,4,8,8-四(3,5-二甲基苯基)四氢-2,2-二甲基-6-苯基-1,3-二氧戊环[4,5-e]二恶唑磷 (2Z)-3-[[(4-氯苯基)氨基]-2-氰基丙烯酸乙酯 (2S,3S,5S)-5-(叔丁氧基甲酰氨基)-2-(N-5-噻唑基-甲氧羰基)氨基-1,6-二苯基-3-羟基己烷 (2S,2''S,3S,3''S)-3,3''-二叔丁基-4,4''-双(2,6-二甲氧基苯基)-2,2'',3,3''-四氢-2,2''-联苯并[d][1,3]氧杂磷杂戊环 (2S)-(-)-2-{[[[[3,5-双(氟代甲基)苯基]氨基]硫代甲基]氨基}-N-(二苯基甲基)-N,3,3-三甲基丁酰胺 (2S)-2-[[[[[[((1R,2R)-2-氨基环己基]氨基]硫代甲基]氨基]-N-(二苯甲基)-N,3,3-三甲基丁酰胺 (2-硝基苯基)磷酸三酰胺 (2,6-二氯苯基)乙酰氯 (2,3-二甲氧基-5-甲基苯基)硼酸 (1S,2S,3S,5S)-5-叠氮基-3-(苯基甲氧基)-2-[(苯基甲氧基)甲基]环戊醇 (1-(4-氟苯基)环丙基)甲胺盐酸盐 (1-(3-溴苯基)环丁基)甲胺盐酸盐 (1-(2-氯苯基)环丁基)甲胺盐酸盐 (1-(2-氟苯基)环丙基)甲胺盐酸盐 (-)-去甲基西布曲明 龙胆酸钠 龙胆酸叔丁酯 龙胆酸 龙胆紫 龙胆紫 齐达帕胺 齐诺康唑 齐洛呋胺 齐墩果-12-烯[2,3-c][1,2,5]恶二唑-28-酸苯甲酯 齐培丙醇 齐咪苯 齐仑太尔 黑染料 黄酮,5-氨基-6-羟基-(5CI) 黄酮,6-氨基-3-羟基-(6CI) 黄蜡,合成物 黄草灵钾盐