Syntheses and Structures of Isomeric Diaminotriazinyl-Substituted 2,2′-Bipyridines and 1,10-Phenanthrolines
作者:Adam Duong、Thierry Maris、Olivier Lebel、James D. Wuest
DOI:10.1021/jo102191n
日期:2011.3.4
Isomeric 2,2'-bipyridines 4a-6a and 1,10-phenanthrolines 7a-9a with two diaminotriazinyl (DAT) substituents were synthesized to explore their dual ability to direct association by the chelation of metals and the characteristic hydrogen bonding of DAT groups. Crystals of compounds 4a-6a and 7a-9a were grown under diverse conditions, and their structures were solved by X-ray crystallography. Analysis revealed multiple shared features analogous to those observed in the structures of simpler DAT-substituted pyridines 1-3. For example, the bipyridines and phenanthrolines favor flattened conformations except in the cases of compounds 8a and 9a, where the patterns of substitution prevent the DAT groups from lying in the plane of the phenanthroline core. As expected, the DAT groups form approximately coplanar hydrogen bonds according to standard motifs I-III, which play a key role in directing molecular organization. However, the structures of simple pyridines 1-3, which favor efficiently packed chains and sheets, differ predictably from those of bipyridines 4a-6a and phenanthrolines 7a-9a in two ways: (1) The larger number of DAT groups in compounds 4a-9a typically leads to complex three-dimensional networks held together by a larger number of hydrogen bonds per molecule, and (2) the need to respect multiple directional interactions prevents compounds 4a-9a from forming closely packed structures, and significant quantities of guests are included. Together, these observations confirm the effectiveness of incorporating special groups such as DAT within more complex molecular structures to control association according to reliable patterns. Bipyridines 4a-6a and phenanthrolines 7a-9a promise to be particularly rich sources of new supramolecular chemistry because they have well-defined molecular topologies and a dual ability to direct association by chelating metals and by engaging in multiple hydrogen bonds according to reliable patterns.
N
<i>‐</i>
Rich Porous Polymer with Isolated Tb
<sup>3+</sup>
‐Ions Displays Unique Temperature Dependent Behavior through the Absence of Thermal Quenching
作者:Flore Vanden Bussche、Anna M. Kaczmarek、Savita K. P. Veerapandian、Jonas Everaert、Maarten Debruyne、Sara Abednatanzi、Rino Morent、Nathalie De Geyter、Veronique Van Speybroeck、Pascal Van Der Voort、Christian V. Stevens
DOI:10.1002/chem.202002009
日期:2020.12
successfully showed temperature‐dependentbehavior in the 10–310 K range, proving the potential of amorphous, porous organic frameworks. We observed uniquetemperaturedependentbehavior. More intriguingly, instead of the standard observed change in emission as a result of a change in temperature for both Eu3+ and Tb3+, the emission spectrum of Tb3+ remained constant. This work provides framework‐ and