The conjugated bile acid hydrolase gene from the silage isolate Lactobacillus plantarum 80 was cloned and expressed in Escherichia coli MC1061. For the screening of this hydrolase gene within the gene bank, a direct plate assay developed by Dashkevicz and Feighner (M. P. Dashkevicz and S. D. Feighner, Appl. Environ. Microbiol. 53:331-336, 1989) was adapted to the growth requirements of E. coli. Because of hydrolysis and medium acidification, hydrolase-active colonies were surrounded with big halos of precipitated, free bile acids. This phenomenon was also obtained when the gene was cloned into a multicopy shuttle vector and subsequently reintroduced into the parental Lactobacillus strain. The cbh gene and surrounding regions were characterized by nucleotide sequence analysis. The deduced amino acid sequence was shown to have 52% similarity with a penicillin V amidase from Bacillus sphaericus. Preliminary characterization of the gene product showed that it is a cholylglycine hydrolase (EC 3.5.1.24) with only slight activity against taurine conjugates. The optimum pH was between 4.7 and 5.5. Optimum temperature ranged from 30 to 45 degrees C. Southern blot analysis indicated that the cloned gene has similarity with genomic DNA of bile acid hydrolase-active Lactobacillus spp. of intestinal origin.
The gene encoding a conjugated bile acid hydrolase (CBAH) from Clostridium perfringens 13 has been cloned and expressed in Escherichia coli, and its nucleotide sequence has been determined. Nucleotide and predicted amino acid sequence analyses indicated that the gene product is related to two previously characterized amidases, a CBAH from Lactobacillus plantarum (40% identity) and a penicillin V amidase from Bacillus sphaericus (34% identity). The product is apparently unrelated to a CBAH from C. perfringens for which N-terminal sequence information was determined. The gene product was purified from recombinant E. coli and used to raise antibody in rabbits. The presence of the protein in C. perfringens was then confirmed by immunoblot analysis. The protein was shown to have a native molecular weight of 147,000 and a subunit molecular weight of 36,100, indicating its probable existence as a tetramer. Disruption of the chromosomal C. perfringens CBAH gene with a chloramphenicol resistance cartridge resulted in a mutant strain which retained partial CBAH activity. Polyacrylamide gel electrophoresis followed by enzymatic activity staining and immunoblotting indicated that the mutant strain no longer expressed the cloned CBAH (CBAH-1) but did express at least one additional CBAH (CBAH-2). CBAH-2 was immunologically distinct from CBAH-1, and its mobility on native polyacrylamide gels was different from that of CBAH-1. Furthermore, comparisons of pH optima and substrate specificities of CBAH activities from recombinant E. coli and wild-type and mutant C. perfringens provided further evidence for the presence of multiple CBAH activities in C. perfringens.