Optimization of the Indenone Ring of Indenoisoquinoline Topoisomerase I Inhibitors
摘要:
Two series of indenoisoquinoline topoisomerase I inhibitors have been prepared to investigate optimal substituents on the indenone ring at the 9-position. The more exhaustive series was prepared using a nitrated isoquinoline ring that has been previously demonstrated to enhance biological activity. After preliminary biological evaluation, a more focused series of inhibitors was prepared utilizing a 2,3-dimethoxy-substituted isoquinoline ring. The results of the two series indicate the existence of superior functional groups such as methoxy, fluorine, and cyano for the indenoisoquinoline 9-position. Interestingly, these functional groups coincide with established structure-activity relationships for the 11-position of camptothecin.
Indenoisoquinolines and dihydroindenoisoquinolines have been synthesized possessing a nitro-substituted isoquinoline ring in an effort to explore the effects of electron-withdrawing substituents on biological activity. The in vitro anticancer activities of these molecules have been tested in the National Cancer Institute's screen of 55 cell lines. The compounds have also been tested for topoisomerase I (topI) inhibition. The results indicate that these substances are a potent class of topI inhibitors with sub-micromolar cytotoxicity mean graph midpoints (MGM) and topI inhibition equal to camptothecin. (C) 2004 Elsevier Ltd. All rights reserved.
US7495100B2
申请人:——
公开号:US7495100B2
公开(公告)日:2009-02-24
Synthesis of indenoisoquinolines
申请人:Cushman S. Mark
公开号:US20060025595A1
公开(公告)日:2006-02-02
Indenoisoquinolines and dihydroindenoisoquinolines are described. In particular, such compounds possessing one or more electron withdrawing substituents are described. The in vitro anticancer activities of these molecules tested in the National Cancer Institute's screen of 55 cell lines is described. The compounds tested for topoisomerase I (top1) inhibition is described.
Two series of indenoisoquinoline topoisomerase I inhibitors have been prepared to investigate optimal substituents on the indenone ring at the 9-position. The more exhaustive series was prepared using a nitrated isoquinoline ring that has been previously demonstrated to enhance biological activity. After preliminary biological evaluation, a more focused series of inhibitors was prepared utilizing a 2,3-dimethoxy-substituted isoquinoline ring. The results of the two series indicate the existence of superior functional groups such as methoxy, fluorine, and cyano for the indenoisoquinoline 9-position. Interestingly, these functional groups coincide with established structure-activity relationships for the 11-position of camptothecin.