An easily accessible chiral iridium-BINAP complex can effect the cooperative processes of decarbonylation of an aldehyde and cascaded enantioselective Pauson-Khand-type reaction. A survey of ligands revealed that atropisomeric aryl-diphosphine ligands were superior to chiral alkyl-diphosphines in this dual catalysis. Applying the reaction conditions of [IrCl(COD)](2)/(S)-BINAP complex with nonylaldehyde as a CO surrogate at 100 degrees C in anhydrous dioxane solvent, various 1,6-enynes were transformed to the corresponding optically active bicyclic cyclopentenones with excellent enantioselectivities (up to 98% ee). (c) 2006 Elsevier Ltd. All rights reserved.
Microwave‐Assisted Rhodium‐Complex‐Catalyzed Cascade Decarbonylation and Asymmetric Pauson–Khand‐Type Cyclizations
作者:Hang Wai Lee、Lai Na Lee、Albert S. C. Chan、Fuk Yee Kwong
DOI:10.1002/ejoc.200800272
日期:2008.7
Microwave-assisted Rh–diphosphane-complex-catalyzed dual catalysis is reported. This cooperative process provides [2+2+1] cycloadducts by sequential decarbonylation of aldehyde or formate and carbonylation of enynes within a short period of time. Various O-, N-, and C-tethered enynes were transformed into the corresponding products in good yields. The first enantioselective version of this microwave-accelerated
Rh-Catalyzed Aqueous Pauson-Khand-Type Cycloaddition in Microwave-Irradiated Medium
作者:Fuk Kwong、Albert Chan、Hang Lee
DOI:10.1055/s-2008-1078413
日期:2008.6
Microwave-assisted Rh-catalyzed dual catalysis in aqueous medium is described. This tandem process transforms the enyne to cycloadduct by cascade decarbonylation of formate ester and subsequently carbonylation of enyne under microwave-irradiated conditions.
Utilization of Aldoses as a Carbonyl Source in Cyclocarbonylation of Enynes
作者:Keiichi Ikeda、Tsumoru Morimoto、Kiyomi Kakiuchi
DOI:10.1021/jo1012288
日期:2010.9.17
The reaction of enynes with acetyl-masked aldoses in the presence of a rhodium(I) catalyst resulted in cyclocarbonylation, thus avoiding the direct use of carbon monoxide, to afford bicyclic cyclopentenones. In rhodium catalysis, aldoses serve as a carbon monoxide equivalent by donating their carbonyl moieties on the acyclic aldehyde form to enynes. A variety of aldoses, including d-glucose, d-mannose
A novel rhodium-catalyzed asymmetric intramolecular Pauson–Khandreaction using a chiral monophosphoramidite ligands is described. In this reaction, an in situ generated catalyst from [Rh(CO)2Cl]2, the spiro-monophosphoramidite ligand SIPHOS and AgSbF6 was found to be effective for a series of 1,6-enynes, providing the co-cyclization products in good enantioselectivities (84% ee).