摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

6-hydroxy-1-aminopyrene | 1732-30-5

中文名称
——
中文别名
——
英文名称
6-hydroxy-1-aminopyrene
英文别名
6-Amino-1-pyrenol;6-aminopyren-1-ol
6-hydroxy-1-aminopyrene化学式
CAS
1732-30-5
化学式
C16H11NO
mdl
——
分子量
233.269
InChiKey
XOQOUBKUJHPDSC-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    4
  • 重原子数:
    18
  • 可旋转键数:
    0
  • 环数:
    4.0
  • sp3杂化的碳原子比例:
    0.0
  • 拓扑面积:
    46.2
  • 氢给体数:
    2
  • 氢受体数:
    2

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量
  • 下游产品
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    N-七氟丁酰基咪唑6-hydroxy-1-aminopyrene 反应 1.0h, 生成 2,2,3,3,4,4,4-Heptafluoro-butyric acid 6-(2,2,3,3,4,4,4-heptafluoro-butyrylamino)-pyren-1-yl ester
    参考文献:
    名称:
    Sensitive and Selective Detection of Urinary 1-Nitropyrene Metabolites following Administration of a Single Intragastric Dose of Diesel Exhaust Particles (SRM 2975) to Rats
    摘要:
    1-Nitropyrene (1-NP) has been proposed as a marker for exposure to diesel exhaust particles (DEP). Since the extent of the actual intake of 1-NP adsorbed on DEP will be relatively low, sensitive and selective methods are needed regarding human exposure assessment. Two analytical methods are presented for the assessment of 1-NP metabolites in urine of male Sprague-Dawley rats administered a single intragastric dose of native DEP (SRM 2975, 20 mg, 35.7 mu g of 1-NP/g). Enzymatically hydrolyzed urine was extracted using Blue Rayon. The extracts were analyzed directly, using HPLC with postcolumn on-line reduction and fluorescence detection (HPLC-Flu), or were processed further for GC/MS/MS analysis. Although sensitive to several metabolites, the HPLC-Flu method lacked selectivity for quantitation of some important metabolites in rat urinary extracts, and therefore seems suitable for screening purposes only. With regard to GC/MS/MS analysis, derivatization with heptafluorobutyrylimidazole (HFBI) yielded low limits of determination for hydroxy-l-aminopyrenes, hydroxy-N-acetyl-1-aminopyrenes (converted to derivatized hydroxy-l-aminopyrenes by the reagent), and l-aminopyrene (1.8-9.2 fmol on the column). Derivatization of hydroxy-l-nitropyrenes yielded relatively high limits of determination, and therefore, hydroxy-l-nitropyrenes were reduced to hydroxy-l-aminopyrenes prior to derivatization with HFBI. Intragastric administration of DEP to rats resulted in urinary excretion of 6-hydroxy-N-acetyl-1-aminopyrene, 8-hydroxy-N-acetyl-1-aminopyrene, 6-hydroxy-1-nitropyrene, 8-hydroxy-1-nitropyrene, and 3-hydroxy-1-nitropyrene (7, 1.2, 1.6, 0.3, and 0.5% of the dose within 12 h, respectively), l-Nitropyrene, N-acetyl-1-aminopyrene, and 3-, 6-, and 8-hydroxy-1-aminopyrene were not observed as urinary metabolites following administration of a single dose of DEP. The observed excretion pattern and urinary metabolite concentrations suggest that 1-NP present on unmodified DEP becomes bioavailable to a large extent and is metabolized in the same way as was previously observed following administration of pure 1-NP. The presented methods are promising for assessment of human exposure to 1-NP, e.g., following exposure to DEP, because of the possibility of analyzing large volumes of urine, the conversion of three types of metabolites to one (the amino metabolites), and the low detection limits that are achieved.
    DOI:
    10.1021/tx980162x
  • 作为产物:
    描述:
    1-硝基芘-6-醇氯化铵 作用下, 以 乙醇 为溶剂, 生成 6-hydroxy-1-aminopyrene
    参考文献:
    名称:
    Role of O-acetyltransferase in activation of oxidised metabolites of the genotoxic environmental pollutant 1-nitropyrene
    摘要:
    The genotoxic environmental contaminant l-nitropyrene is metabolised in mammalian systems by pathways more complex than the straightforward nitroreduction which accounts for most of its biological activity in bacteria. In order to evaluate the role of O-acetyltransferase (OAT) activity in generation of genotoxic intermediates from 1-nitropyrene, the mutagenicity of the major primary oxidised metabolites of 1-nitropyrene was characterised in the Ames Salmonella typhimurium plate incorporation assay with strain TA98, and with variants of TA98 deficient (TA98/1,8-DNP6) or enhanced (YG1024) in O-acetyltransferase. 1-Nitropyren-3-ol was more mutagenic in the absence than in the presence of S9, while 1-nitropyren-4-ol, 1-nitropyren-6-ol and 1-nitropyren-8-ol required S9 for maximum expression of mutagenicity. 1-Nitropyren-4-ol (176 rev/nmol without S9, 467 rev/nmol with S9 in TA98) and 1-nitropyren-6-ol (13 rev/nmol without S9, 266 rev/nmol with S9 in TA98) were overall the most potent nitropyrenol isomers assayed. 1-Acetamidopyren-8-ol and 2-acetamidopyrene 4,5-quinone were only minimally active. 1-Acetamidopyren-3-ol exhibited direct-acting mutagenicity. 1-Acetamidopyren-6-ol, previously shown to be a major contributor to mutagenicity in the urines of rats dosed with l-nitropyrene (Ball et al., 1984b), was confirmed as a potent (359 rev/nmol) S9-dependent mutagen. Both the direct-acting and the S9-dependent mutagenicity of all the compounds studied was enhanced in the OAT-overproducing strain and much diminished (though not always entirely lost) in the OAT-deficient strain, showing that OAT amplifies expression of the genotoxicity of these compounds. 1-Acetamidopyren-6-ol required both 89 and OAT activity in order to exhibit any mutagenicity; this finding strongly implicates N-hydroxylation followed by O-esterification, as opposed to further S9-catalyzed ring oxidation, as a major route of activation for urinary metabolites of 1-nitropyrene.
    DOI:
    10.1016/s0165-1218(96)90026-9
点击查看最新优质反应信息

文献信息

  • Role of O-acetyltransferase in activation of oxidised metabolites of the genotoxic environmental pollutant 1-nitropyrene
    作者:P.F. Rosser、P. Ramachandran、R. Sangaiah、R.N. Austin、A. Gold、L.M. Ball
    DOI:10.1016/s0165-1218(96)90026-9
    日期:1996.8
    The genotoxic environmental contaminant l-nitropyrene is metabolised in mammalian systems by pathways more complex than the straightforward nitroreduction which accounts for most of its biological activity in bacteria. In order to evaluate the role of O-acetyltransferase (OAT) activity in generation of genotoxic intermediates from 1-nitropyrene, the mutagenicity of the major primary oxidised metabolites of 1-nitropyrene was characterised in the Ames Salmonella typhimurium plate incorporation assay with strain TA98, and with variants of TA98 deficient (TA98/1,8-DNP6) or enhanced (YG1024) in O-acetyltransferase. 1-Nitropyren-3-ol was more mutagenic in the absence than in the presence of S9, while 1-nitropyren-4-ol, 1-nitropyren-6-ol and 1-nitropyren-8-ol required S9 for maximum expression of mutagenicity. 1-Nitropyren-4-ol (176 rev/nmol without S9, 467 rev/nmol with S9 in TA98) and 1-nitropyren-6-ol (13 rev/nmol without S9, 266 rev/nmol with S9 in TA98) were overall the most potent nitropyrenol isomers assayed. 1-Acetamidopyren-8-ol and 2-acetamidopyrene 4,5-quinone were only minimally active. 1-Acetamidopyren-3-ol exhibited direct-acting mutagenicity. 1-Acetamidopyren-6-ol, previously shown to be a major contributor to mutagenicity in the urines of rats dosed with l-nitropyrene (Ball et al., 1984b), was confirmed as a potent (359 rev/nmol) S9-dependent mutagen. Both the direct-acting and the S9-dependent mutagenicity of all the compounds studied was enhanced in the OAT-overproducing strain and much diminished (though not always entirely lost) in the OAT-deficient strain, showing that OAT amplifies expression of the genotoxicity of these compounds. 1-Acetamidopyren-6-ol required both 89 and OAT activity in order to exhibit any mutagenicity; this finding strongly implicates N-hydroxylation followed by O-esterification, as opposed to further S9-catalyzed ring oxidation, as a major route of activation for urinary metabolites of 1-nitropyrene.
  • Sensitive and Selective Detection of Urinary 1-Nitropyrene Metabolites following Administration of a Single Intragastric Dose of Diesel Exhaust Particles (SRM 2975) to Rats
    作者:Yvette M. van Bekkum、Petra H. H. van den Broek、Paul T. J. Scheepers、Rob P. Bos
    DOI:10.1021/tx980162x
    日期:1998.11.1
    1-Nitropyrene (1-NP) has been proposed as a marker for exposure to diesel exhaust particles (DEP). Since the extent of the actual intake of 1-NP adsorbed on DEP will be relatively low, sensitive and selective methods are needed regarding human exposure assessment. Two analytical methods are presented for the assessment of 1-NP metabolites in urine of male Sprague-Dawley rats administered a single intragastric dose of native DEP (SRM 2975, 20 mg, 35.7 mu g of 1-NP/g). Enzymatically hydrolyzed urine was extracted using Blue Rayon. The extracts were analyzed directly, using HPLC with postcolumn on-line reduction and fluorescence detection (HPLC-Flu), or were processed further for GC/MS/MS analysis. Although sensitive to several metabolites, the HPLC-Flu method lacked selectivity for quantitation of some important metabolites in rat urinary extracts, and therefore seems suitable for screening purposes only. With regard to GC/MS/MS analysis, derivatization with heptafluorobutyrylimidazole (HFBI) yielded low limits of determination for hydroxy-l-aminopyrenes, hydroxy-N-acetyl-1-aminopyrenes (converted to derivatized hydroxy-l-aminopyrenes by the reagent), and l-aminopyrene (1.8-9.2 fmol on the column). Derivatization of hydroxy-l-nitropyrenes yielded relatively high limits of determination, and therefore, hydroxy-l-nitropyrenes were reduced to hydroxy-l-aminopyrenes prior to derivatization with HFBI. Intragastric administration of DEP to rats resulted in urinary excretion of 6-hydroxy-N-acetyl-1-aminopyrene, 8-hydroxy-N-acetyl-1-aminopyrene, 6-hydroxy-1-nitropyrene, 8-hydroxy-1-nitropyrene, and 3-hydroxy-1-nitropyrene (7, 1.2, 1.6, 0.3, and 0.5% of the dose within 12 h, respectively), l-Nitropyrene, N-acetyl-1-aminopyrene, and 3-, 6-, and 8-hydroxy-1-aminopyrene were not observed as urinary metabolites following administration of a single dose of DEP. The observed excretion pattern and urinary metabolite concentrations suggest that 1-NP present on unmodified DEP becomes bioavailable to a large extent and is metabolized in the same way as was previously observed following administration of pure 1-NP. The presented methods are promising for assessment of human exposure to 1-NP, e.g., following exposure to DEP, because of the possibility of analyzing large volumes of urine, the conversion of three types of metabolites to one (the amino metabolites), and the low detection limits that are achieved.
查看更多