Small-Molecule Inhibitors of Protein Geranylgeranyltransferase Type I
摘要:
Small molecules that inhibit the geranylgeranylation of K-Ras4B and RhoA by protein geranylgeranyltransferase type I (GGTase-I) were identified from chemical genetic screens of heterocycles synthesized through phosphine catalysis of allenes. To further improve the efficacy of the GGTase-I inhibitors (GGTIs), 4288 related compounds bearing core dihydropyrrole/pyrrolidine and tetrahydropyridine/piperidine scaffolds were synthesized on SynPhase lanterns in a split-pool manner through phosphine-catalyzed [3 + 2] and [4 + 2] annulations of resin-bound allenoates. Testing of the 4288 analogues resulted in several GGTIs exhibiting submicromolar IC50 values. Because proteins such as Ras and Rho GTPases are implicated in oncogenesis and metastasis, these GGTIs might ultimately lead to the development of novel antitumor therapeutics.
Small-Molecule Inhibitors of Protein Geranylgeranyltransferase Type I
摘要:
Small molecules that inhibit the geranylgeranylation of K-Ras4B and RhoA by protein geranylgeranyltransferase type I (GGTase-I) were identified from chemical genetic screens of heterocycles synthesized through phosphine catalysis of allenes. To further improve the efficacy of the GGTase-I inhibitors (GGTIs), 4288 related compounds bearing core dihydropyrrole/pyrrolidine and tetrahydropyridine/piperidine scaffolds were synthesized on SynPhase lanterns in a split-pool manner through phosphine-catalyzed [3 + 2] and [4 + 2] annulations of resin-bound allenoates. Testing of the 4288 analogues resulted in several GGTIs exhibiting submicromolar IC50 values. Because proteins such as Ras and Rho GTPases are implicated in oncogenesis and metastasis, these GGTIs might ultimately lead to the development of novel antitumor therapeutics.
Strecker reactions of various aldimines as well as ketoimines with TMSCN proceeded smoothly under mild conditions to give the corresponding alpha-amino nitriles and alpha,alpha-disubstituted alpha-amino nitriles, respectively, in good to excellent yields in the presence of nanocrystalline magnesium oxide. The reaction proceeds through hypervalent silicate species by coordination to O2-/O- (Lewis basic site) of nanocrystalline magnesium oxide, proved by Si-29 NMR. (C) 2008 Elsevier Ltd. All rights reserved.
Copper−Amidophosphine Catalyst in Asymmetric Addition of Organozinc to Imines
The present invention is directed to novel compounds. These compounds can be useful in inhibiting the activity of GGTase I. The compounds can also be used as anti-cancer therapeutics including as part of methods for treating cancer, in assays, and in kits.