摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

2-(2-aminoethyl)-5-nitrohydroquinone | 41241-39-8

中文名称
——
中文别名
——
英文名称
2-(2-aminoethyl)-5-nitrohydroquinone
英文别名
2-(2-Aminoethyl)-5-nitrobenzene-1,4-diol
2-(2-aminoethyl)-5-nitrohydroquinone化学式
CAS
41241-39-8
化学式
C8H10N2O4
mdl
——
分子量
198.178
InChiKey
PYVMPIIVMMPROM-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    0.9
  • 重原子数:
    14
  • 可旋转键数:
    2
  • 环数:
    1.0
  • sp3杂化的碳原子比例:
    0.25
  • 拓扑面积:
    112
  • 氢给体数:
    3
  • 氢受体数:
    5

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为产物:
    描述:
    参考文献:
    名称:
    Synthesis and physicochemical and neurotoxicity studies of 1-(4-substituted-2,5-dihydroxyphenyl)-2-aminoethane analogs of 6-hydroxydopamine
    摘要:
    In an attempt to evaluate the possible relationship between the neurotoxicity of 6-hydroxydopamine and the redox properties and electrophilic reactivity of the 6-hydroxydopamine-p-hydroquinone/p-quinone system, we have synthesized a series of 6-hydroxydopamine analogues in which the C4-hydroxy group is replaced with various electron-donating and electron-withdrawing substituents. With the aid of cyclic voltammetry, the formal oxidation potentials (E degrees ') for the p-hydroquinone/p-quinone redox couples and the rates of cyclization of the p-quinones to the corresponding p-iminoquinones were determined. As expected, electron-rich p-hydroquinones were easily oxidized to the p-quinones, which underwent cyclization slowly, whereas the oxidation of electron-poor p-hydroquinones required higher voltages and yielded p-quinones, which cyclized readily at pH 7.4. The neurotoxic potential of these compounds showed that in vivo destruction of noradrenergic terminals, as measured by inhibition of norepinephrine uptake by rat heart slices, occurred only with those analogues bearing electron-donating substituents. Potent neurotoxic properties were associated only with the 4-amino and 4-hydroxy derivatives, both of which form p-quinones, which do not cyclize readily at pH 7.4. These results support the thesis that the p-quinone derived from 6-hydroxydopamine may be an important species in the mediation of the neurodestruction caused by 6-hydrodopamine.
    DOI:
    10.1021/jm00370a014
点击查看最新优质反应信息

文献信息

  • Synthesis and physicochemical and neurotoxicity studies of 1-(4-substituted-2,5-dihydroxyphenyl)-2-aminoethane analogs of 6-hydroxydopamine
    作者:Alice C. Cheng、Neal Castagnoli
    DOI:10.1021/jm00370a014
    日期:1984.4
    In an attempt to evaluate the possible relationship between the neurotoxicity of 6-hydroxydopamine and the redox properties and electrophilic reactivity of the 6-hydroxydopamine-p-hydroquinone/p-quinone system, we have synthesized a series of 6-hydroxydopamine analogues in which the C4-hydroxy group is replaced with various electron-donating and electron-withdrawing substituents. With the aid of cyclic voltammetry, the formal oxidation potentials (E degrees ') for the p-hydroquinone/p-quinone redox couples and the rates of cyclization of the p-quinones to the corresponding p-iminoquinones were determined. As expected, electron-rich p-hydroquinones were easily oxidized to the p-quinones, which underwent cyclization slowly, whereas the oxidation of electron-poor p-hydroquinones required higher voltages and yielded p-quinones, which cyclized readily at pH 7.4. The neurotoxic potential of these compounds showed that in vivo destruction of noradrenergic terminals, as measured by inhibition of norepinephrine uptake by rat heart slices, occurred only with those analogues bearing electron-donating substituents. Potent neurotoxic properties were associated only with the 4-amino and 4-hydroxy derivatives, both of which form p-quinones, which do not cyclize readily at pH 7.4. These results support the thesis that the p-quinone derived from 6-hydroxydopamine may be an important species in the mediation of the neurodestruction caused by 6-hydrodopamine.
查看更多