AbstractThe complexes Cp(MeIm)IrI2 and CpMe4(MeIm)IrCl2 have been prepared and subsequently methylated to form Cp(MeIm)IrMe2 and CpMe4(MeIm)IrMe2 (Cp=η5‐C5H5, CpMe4=η5‐C5HMe4, MeIm=1,3‐dimethylimidazol‐2‐ylidene). We attempted unsuccessfully to use the dimethyl complexes to study C−D bond activation via methyl‐group abstraction. Protonation with one equivalent of a weak acid, such as 2,6‐dimethylpyridinium chloride, affords methane and IrIII methyl chloride complexes. 1H‐NMR experiments show addition of pyridinium [BArF20]− (BArF20=[B(C6F5)4]−) to the dimethyl species forms [Cp(MeIm)IrMe(py)]+[BArF20]− (py=pyridine) or [CpMe4(MeIm)IrMe(py)]+[BArF20]− respectively, alongside methane, while use of the [BArF20]− salts of more bulky 2,6‐dimethylpyridinium and 2,6‐di‐tert‐butylpyridinium gave an intractable mixture. Likewise, the generation of 16 e− species [CpMe4(MeIm)IrMe]+[BArF20]− or [Cp(MeIm)IrMe]+[BarF20]− at low temperature using 2,6‐dimethylpyridinium or 2,6‐di‐tert‐butylpyridinium in thawing C6D6 or toluene‐d8 formed an intractable mixture and did not lead to C−D bond activation. X‐ray structures of several IrIII complexes show similar sterics as that found for the previously reported Cp* analogue.
摘要制备了 Cp(MeIm)IrI2 和 CpMe4(MeIm)IrCl2 复合物,随后将其甲基化,形成 Cp(MeIm)IrMe2 和 CpMe4(MeIm)IrMe2 (Cp=η5-C5H5,CpMe4=η5-C5HMe4,MeIm=1,3-二甲基咪唑-2-亚基)。我们曾尝试用二甲基络合物来研究通过甲基基团萃取活化 C-D 键,但未成功。用一种等效的弱酸(如 2,6-二甲基氯化吡啶)进行质子化,可得到甲烷和 IrIII 甲基氯化物络合物。1H-NMR 实验显示,将吡啶鎓 [BArF20]- (BArF20=[B(C6F5)4]-)加入二甲基络合物后,分别形成 [Cp(MeIm)IrMe(py)]+[BArF20]-(py=吡啶)或 [CpMe4(MeIm)IrMe(py)]+[BArF20]-、而使用体积更大的 2,6-二甲基吡啶鎓和 2,6-二叔丁基吡啶鎓的[BArF20]-盐,则会产生难以处理的混合物。同样,在解冻的 C6D6 或甲苯-d8 中使用 2,6-二甲基吡啶鎓或 2,6-二叔丁基吡啶鎓在低温下生成 16 个 e- 物种 [CpMe4(MeIm)IrMe]+[BArF20]- 或 [Cp(MeIm)IrMe]+[BarF20]- 时,也会形成难溶混合物,并且不会导致 C-D 键活化。几种 IrIII 复合物的 X 射线结构显示出与先前报告的 Cp* 类似物类似的立体结构。