Free radical-mediated alkylation of general alkenes is a challenging and largely unmet goal. Herein, we disclose a conceptually novel "polarity umpolung" strategy for radical alkylation of alkenes using a portfolio of easily-accessed, dual-function alkylating reagents. This is achieved by substituting inherently nucleophilic alkyl radicals with electrophilic sulfone-decorated surrogates, thus inverting
Radical Heteroarylalkylation of Alkenes via
<scp>Three‐Component Docking‐Migration</scp>
Thioetherification Cascade
作者:Tao Niu、Jige Liu、Xinxin Wu、Chen Zhu
DOI:10.1002/cjoc.202000088
日期:2020.8
A novel, rational‐designed approach to access various heteroaryl‐substituted alkyl thioethers was developed via docking‐migration cascade process. By utilizing three components involving alkene, dual‐function reagent, and thioetherificating reagent, radical heteroarylalkylation of alkenes followed by thiolation of the alkyl radical intermediates proceeded smoothly, manifesting well compatibility of
of 1°, 2°, and 3° alkyl radicals through the single-electron transfer of sulfones under mild reaction conditions. These alkyl radicals generated via the reductive desulfonylation of readily synthesized and stable alkylsulfones were engaged to forge C–C bonds. A detailed study was also carried out to shed light on the mechanism.
finds limited applications in fine chemical synthesis, resulting in molecules of modest complexity. Ethylene difunctionalization allows for the synthesis of much more complex chemicals, but it is rare and almost always relies on transition-metal catalysis. Herein, we report an unprecedented metal-free radical difunctionalization of ethylene through a functional group migration strategy. The use of sulfone-based