摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

(-)-Ibogaine | 83-74-9

中文名称
——
中文别名
——
英文名称
(-)-Ibogaine
英文别名
(15S,17R)-17-ethyl-7-methoxy-3,13-diazapentacyclo[13.3.1.02,10.04,9.013,18]nonadeca-2(10),4(9),5,7-tetraene
(-)-Ibogaine化学式
CAS
83-74-9
化学式
C20H26N2O
mdl
——
分子量
310.4
InChiKey
HSIBGVUMFOSJPD-JRCPBQNDSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 熔点:
    152-153°
  • 比旋光度:
    D20 -53° (in 95% ethanol)
  • 沸点:
    450.59°C (rough estimate)
  • 密度:
    1.0633 (rough estimate)
  • 溶解度:
    In water, 257 mg/L at 25 °C (est)
  • 蒸汽压力:
    3.03X10-8 mm Hg at 25 °C (est)
  • 稳定性/保质期:

    Stable under recommended storage conditions. /Ibogaine hydrochloride/

  • 旋光度:
    Specific optical rotation: -53 deg at 20 °C/D in ethanol
  • 解离常数:
    pKa1 = -5.03; pKa2 = 8.97 (tertiary amine); pKa3 = 17.08 (est)

计算性质

  • 辛醇/水分配系数(LogP):
    3.9
  • 重原子数:
    23
  • 可旋转键数:
    2
  • 环数:
    6.0
  • sp3杂化的碳原子比例:
    0.6
  • 拓扑面积:
    28.3
  • 氢给体数:
    1
  • 氢受体数:
    2

ADMET

代谢
伊博葛因是一种具有潜在治疗鸦片和可卡因成瘾作用的活性生物碱。其主要代谢物通过在12位点的氧去甲基化生成12-羟基伊博胺。在本报告中,提出了证据表明在人类肝微粒体中观察到的伊博葛因的氧去甲基化主要由多态性表达的细胞色素P-4502D6(CYP2D6)催化。对汇集的人类肝脏微粒体中伊博葛因氧去甲基酶活性的酶动力学检查表明,有两个(或更多)酶参与此反应:一个具有低KMapp(1.1微摩尔)和一个具有高KMapp(>200微摩尔)。低KMapp活性占总内在清除率的>95%。来自三个个体捐赠者的人类肝脏微粒体显示出类似的酶动力学参数(低和高KM活性的平均KMapp分别为0.55 +/- 0.09微摩尔和310 +/- 10微摩尔)。然而,第四个人类微粒体样本似乎是CYP2D6表型差代谢者,仅具有高KMapp活性。在一组人类捐赠者的肝微粒体中,低KMapp伊博葛因氧去甲基酶活性与CYP2D6催化的布夫拉醇1'-羟基化酶活性相关,而与其他P450同种型特异性活性无关。喹尼丁,一种CYP2D6特异性抑制剂,抑制伊博葛因氧去甲基酶(IC50 = 0.2微摩尔),而其他P450同种型特异性抑制剂未抑制此活性。此外,在一组重组异源表达的人类P450同种型中,只有rCYP2D6具有显著的伊博葛因氧去甲基酶活性。因此,可以得出结论,伊博葛因氧去甲基酶由CYP2D6催化,且此同种型是人类伊博葛因氧去甲基化的主要酶。本文还讨论了这些发现的潜在药理影响。
Ibogaine is a psychoactive alkaloid that possesses potential as an agent to treat opiate and cocaine addiction. The primary metabolite arises via O-demethylation at the 12-position to yield 12-hydroxyibogamine. In this report, evidence is presented that the O-demethylation of ibogaine observed in human hepatic microsomes is catalyzed primarily by the polymorphically expressed cytochrome P-4502D6 (CYP2D6). An enzyme kinetic examination of ibogaine O-demethylase activity in pooled human liver microsomes suggested that two (or more) enzymes are involved in this reaction: one with a low KMapp (1.1 uM) and the other with a high KMapp (>200 uM). The low KMapp activity comprised >95% of total intrinsic clearance. Human liver microsomes from three individual donors demonstrated similar enzyme kinetic parameters (mean KMapp = 0.55 +/- 0.09 uM and 310 +/- 10 microM for low and high KM activities, respectively). However, a fourth human microsome sample that appeared to be a phenotypic CYP2D6 poor metabolizer possessed only the high KMapp activity. In hepatic microsomes from a panel of human donors, the low KMapp ibogaine O-demethylase activity correlated with CYP2D6-catalyzed bufuralol 1'-hydroxylase activity but not with other P450 isoform-specific activities. Quinidine, a CYP2D6-specific inhibitor, inhibited ibogaine O-demethylase (IC50 = 0.2 uM), whereas other P450 isoform-specific inhibitors did not inhibit this activity. Also, of a battery of recombinant heterologously expressed human P450 isoforms, only rCYP2D6 possessed significant ibogaine O-demethylase activity. Thus, it is concluded that ibogaine O-demethylase is catalyzed by CYP2D6 and that this isoform is the predominant enzyme of ibogaine O-demethylation in humans. The potential pharmacological implications of these findings are discussed.
来源:Hazardous Substances Data Bank (HSDB)
代谢
作者们报告了在一例48岁的白人男性体内,伊博加因(ibogaine)及其主要代谢物诺伊博加因(noribogaine)的分布情况,该男性有药物滥用史,因摄入Tabernanthe iboga树根皮导致中毒,在其家中被发现死亡。使用完全验证的液相色谱-电喷雾质谱法对组织和液体中的伊博加因和诺伊博加因进行了量化。除了心脏组织外,所有调查的基质中均发现了伊博加因和诺伊博加因。在脾脏、肝脏、大脑和肺中发现了最高浓度的药物。组织和锁骨下血液中药物浓度比率的平均值分别为:伊博加因在脾脏、肝脏、大脑和肺中分别为1.78、3.75、1.16和4.64,诺伊博加因在脾脏、肝脏、大脑和肺中分别为0.83、2.43、0.90和2.69。在前列腺组织中发现了两种药物的非常低浓度。伊博加因和诺伊博加因都会分泌到胆汁中并穿越血脑屏障。在大多数研究的基质中检测到了另外四种化合物。其中一种被确认为伊博胺(ibogamine)。不幸的是,由于缺乏参考物质,作者们无法确定另外三种化合物的身份。其中两种可能归因于以下氧化产物:伊博苏特因(iboluteine)和去甲氧基伊博苏特因(desmethoxyiboluteine)。第三种化合物可能是伊博加林(ibogaline)。
/The authors/ report ... the tissue distribution of ibogaine and noribogaine, the main metabolite of ibogaine, in a 48-year-old Caucasian male, with a history of drug abuse, found dead at his home after a poisoning involving the ingestion of root bark from the shrub Tabernanthe iboga. Ibogaine and noribogaine were quantified in tissues and fluids using a fully validated liquid chromatography-electrospray mass spectrometry method. Apart from cardiac tissue, ibogaine and noribogaine were identified in all matrices investigated. The highest concentrations were found in spleen, liver, brain, and lung. The tissue/subclavian blood concentration ratios averaged 1.78, 3.75, 1.16, and 4.64 for ibogaine and 0.83, 2.43, 0.90, and 2.69 for noribogaine for spleen, liver, brain, and lung, respectively. Very low concentrations of the two drugs were found in the prostatic tissue. Both ibogaine and noribogaine are secreted in the bile and cross the blood-brain barrier. Four other compounds were detected in most of the studied matrices. One of them was identified as ibogamine. Unfortunately, /the authors/ were not able to positively identify the other three compounds because of the unavailability of reference substances. Two of them could possibly be attributed to the following oxidation products: iboluteine and desmethoxyiboluteine. The third compound could be ibogaline.
来源:Hazardous Substances Data Bank (HSDB)
毒理性
  • 解毒与急救
/SRP:/ 立即急救:确保已经进行了充分的中毒物清除。如果患者停止呼吸,开始人工呼吸,最好使用需求阀复苏器、袋阀面罩装置或口袋面罩,按训练操作。如有必要,执行心肺复苏。立即用缓慢流动的冲洗受污染的眼睛。不要催吐。如果发生呕吐,让患者前倾或置于左侧(如果可能的话,头部向下)以保持呼吸道畅通,防止吸入。保持患者安静,维持正常体温。寻求医疗帮助。 /毒物A和B/
/SRP:/ Immediate first aid: Ensure that adequate decontamination has been carried out. If patient is not breathing, start artificial respiration, preferably with a demand valve resuscitator, bag-valve-mask device, or pocket mask, as trained. Perform CPR if necessary. Immediately flush contaminated eyes with gently flowing water. Do not induce vomiting. If vomiting occurs, lean patient forward or place on the left side (head-down position, if possible) to maintain an open airway and prevent aspiration. Keep patient quiet and maintain normal body temperature. Obtain medical attention. /Poisons A and B/
来源:Hazardous Substances Data Bank (HSDB)
毒理性
  • 解毒与急救
/SRP:/ 基本治疗:建立专利气道(如有需要,使用口咽或鼻咽气道)。如有必要,进行吸痰。观察呼吸不足的迹象,如有需要,辅助通气。通过非重复呼吸面罩以10至15升/分钟的速度给予氧气。监测肺肿,如有必要,进行治疗……。监测休克,如有必要,进行治疗……。预防癫痫发作,如有必要,进行治疗……。对于眼睛污染,立即用冲洗眼睛。在运输过程中,用0.9%的生理盐(NS)连续冲洗每只眼睛……。不要使用催吐剂。对于摄入,如果患者能够吞咽、有强烈的呕吐反射且不流口,则用温冲洗口腔,并给予5毫升/千克,最多200毫升的进行稀释……。在去污后,用干燥的无菌敷料覆盖皮肤烧伤……。/毒物A和B/
/SRP:/ Basic treatment: Establish a patent airway (oropharyngeal or nasopharyngeal airway, if needed). Suction if necessary. Watch for signs of respiratory insufficiency and assist ventilations if needed. Administer oxygen by nonrebreather mask at 10 to 15 L/min. Monitor for pulmonary edema and treat if necessary ... . Monitor for shock and treat if necessary ... . Anticipate seizures and treat if necessary ... . For eye contamination, flush eyes immediately with water. Irrigate each eye continuously with 0.9% saline (NS) during transport ... . Do not use emetics. For ingestion, rinse mouth and administer 5 mL/kg up to 200 mL of water for dilution if the patient can swallow, has a strong gag reflex, and does not drool ... . Cover skin burns with dry sterile dressings after decontamination ... . /Poisons A and B/
来源:Hazardous Substances Data Bank (HSDB)
毒理性
  • 解毒与急救
/SRP:/ 高级治疗:对于无意识、严重肺肿或严重呼吸困难的病人,考虑进行口咽或鼻咽气管插管以控制气道。使用气囊面罩装置的正压通气技术可能有益。考虑使用药物治疗肺肿……。对于严重的支气管痉挛,考虑给予β激动剂,如沙丁胺醇……。监测心率和必要时治疗心律失常……。开始静脉输注D5W /SRP: "保持开放",最小流量/。如果出现低血容量的迹象,使用0.9%的生理盐(NS)或乳酸林格氏液。对于伴有低血容量迹象的低血压,谨慎给予液体。注意液体过载的迹象……。使用地西泮劳拉西泮治疗癫痫……。使用丙美卡因化物协助眼部冲洗……。/毒物A和B/
/SRP:/ Advanced treatment: Consider orotracheal or nasotracheal intubation for airway control in the patient who is unconscious, has severe pulmonary edema, or is in severe respiratory distress. Positive-pressure ventilation techniques with a bag valve mask device may be beneficial. Consider drug therapy for pulmonary edema ... . Consider administering a beta agonist such as albuterol for severe bronchospasm ... . Monitor cardiac rhythm and treat arrhythmias as necessary ... . Start IV administration of D5W /SRP: "To keep open", minimal flow rate/. Use 0.9% saline (NS) or lactated Ringer's if signs of hypovolemia are present. For hypotension with signs of hypovolemia, administer fluid cautiously. Watch for signs of fluid overload ... . Treat seizures with diazepam or lorazepam ... . Use proparacaine hydrochloride to assist eye irrigation ... . /Poisons A and B/
来源:Hazardous Substances Data Bank (HSDB)
毒理性
  • 人类毒性摘录
/CASE REPORTS/ /The authors/报告了一名男子在摄入粉状伊博加根12小时后死亡的案例,通常人们因其兴奋和致幻特性而服用。通过液-液萃取后的GC-MS/MS方法,在摄入的粉末和受害者的体液中定量了伊博加因和伊博加胺。在现场取的血样和尸检时取的外周血、尿液和胃液样本中测得的伊博加因浓度分别为0.65、1.27、1.7和53.5微克/毫升,而粉末中的伊博加含量为7.2%。此外,对生物样本的系统毒理分析显示,存在治疗浓度的地西泮美沙酮。死亡归因于同时摄入大量伊博加、美沙酮地西泮
/CASE REPORTS/ /The authors/ report the case of a man who died twelve hours after ingesting powdered iboga root, commonly taken for its stimulant and hallucinogenic properties. Ibogaine and ibogamine were quantified in the powder ingested and the victim's body fluids by GC-MS/MS after liquid-liquid extraction. The concentrations of ibogaine measured in the blood samples taken at the scene and in the peripheral blood, urine, and gastric fluid samples taken during the autopsy were 0.65, 1.27, 1.7, and 53.5 ug/mL, while the iboga content in the powder was 7.2%. Moreover, systematic toxicological analyses of biological samples showed the presence of diazepam and methadone in therapeutic concentrations. Death was attributed to the ingestion of a substantial quantity of iboga in the context of simultaneous methadone and diazepam consumption.
来源:Hazardous Substances Data Bank (HSDB)
毒理性
  • 人类毒性摘录
/CASE REPORTS/ 题库盖因是一种天然存在的生物碱,来源于雨林灌木Tabernanthe iboga的根部。已经发生了与使用题库盖因有关的暂时性死亡事件。然而,尽管题库盖因没有被批准为治疗药物,且有证据表明它可能会干扰心脏的节律,这种生物碱目前仍被作为替代医学中用于戒毒目的的抗成瘾药物使用。我们报告了一个男性案例,他在使用题库盖因进行酒精戒毒治疗12-24小时后突然死亡。尸检发现了肝硬化和重度脂肪浸润。题库盖因的浓度为2 mg/L。讨论了使用题库盖因的潜在风险,特别是对于有病理医学背景的人。
/CASE REPORTS/ Ibogaine is a naturally occurring alkaloid derived from the roots of the rain forest shrub Tabernanthe iboga. Deaths have occurred temporarily related to the use of ibogaine. However, although not licensed as therapeutic drug, and despite evidence that ibogaine may disturb the rhythm of the heart, this alkaloid is currently used as an anti-addiction drug in alternative medicine for detoxification purposes. We report the case of a man who died suddenly 12-24 hr after ibogaine use for alcohol detoxification treatment. In the autopsy liver cirrhosis and heavy fatty infiltration was found. The concentration of ibogaine was 2 mg/L. The potential risks of ibogaine use, especially for persons with pathological medical background, are discussed.
来源:Hazardous Substances Data Bank (HSDB)
吸收、分配和排泄
为了研究伊博格因这种潜在的抗成瘾生物碱的药代动力学特性,在大鼠静脉输注后长达3小时的时间内,对这种药物在血浆和组织中的平进行了量化。在31-35分钟输注(20 mg/kg)后立即,平均血浆伊博格因平为373 ng/mL;此后这些值迅速以双指数方式下降。7只动物中有5只的血浆时间过程与双室药代动力学模型非常吻合,α和β半衰期分别为7.3分钟和3.3小时。药物清除率估计为5.9 L/hr(n = 7)。输注结束时3小时后大脑、肝脏和肾脏中的伊博格因平为143-170 ng/g,接近于模拟的外周药代动力学室的价值。然而,3小时后脂肪组织中的药物平要高得多(3,328 ng/g),这意味着需要一个更复杂的药代动力学模型。血浆中伊博格因最初迅速消失的机制可能包括代谢去甲基化以及重新分布到体内储存。脂肪组织对伊博格因的隔离可能是药物在体内持续存在的原因之一。这种持续性可能被本研究报告的β半衰期所低估。
To investigate the pharmacokinetic properties of ibogaine, a putatively anti-addictive alkaloid, levels of this drug were quantified in plasma and tissues for up to 3 hr following i.v. infusion in rats. Immediately following a 31-35 min infusion (20 mg/kg), mean plasma ibogaine levels were 373 ng/mL; these values declined rapidly thereafter in a biexponential manner. The plasma time course in 5 of 7 animals demonstrated an excellent fit to a two-compartment pharmacokinetic model, with alpha and beta half-lives of 7.3 min and 3.3 hr, respectively. Drug clearance was estimated to be 5.9 L/hr (n = 7). Ibogaine levels in brain, liver and kidney 3 hr after the end of drug infusion were 143-170 ng/g, close to simulated values for the peripheral pharmacokinetic compartment. However, 3-hr drug levels in adipose tissue were much higher (3,328 ng/g), implying the need for a more complex pharmacokinetic model. Mechanisms for the initial, rapid disappearance of plasma ibogaine are thought to include metabolic demethylation as well as redistribution to body stores. The sequestration of ibogaine by adipose tissue probably contributes to a protracted persistence of drug in the body. This persistence may be underestimated by the beta half-life reported in the present study.
来源:Hazardous Substances Data Bank (HSDB)
吸收、分配和排泄
疑似具有抗成瘾作用的物质伊博格碱在大鼠经腹膜内(ip)和皮下(sc)给药后在血浆、大脑、肾脏、肝脏和脂肪中的分布进行了测量。腹膜内给药一小时后(剂量为40 mg/kg),药物平从106 ng/ml(血浆)到11,308 ng/g(脂肪)不等,皮下给药同一剂量后药物平显著更高。给药12小时后,药物平降低了10-20倍。这些结果表明:1)伊博格碱在腹膜内给药后受到显著的“首过效应”,表现为皮下给药后药物平更高,2)伊博格碱在脂肪组织中大量积累,与其亲脂性相符,3)药物在脂肪中的持久性可能是其长期作用的原因。
The distribution of the putative anti-addictive substance ibogaine was measured in plasma, brain, kidney, liver and fat after ip and sc administration in rats. One hr after ip dosing (40 mg/kg), drug levels ranged from 106 ng/ml (plasma) to 11,308 ng/g (fat), with significantly higher values after sc administration of the same dose. Drug levels were 10-20 fold lower 12 hr after the same dose. These results suggest that: 1) ibogaine is subject to a substantial "first pass" effect after ip dosing, demonstrated by higher drug levels following the sc route, 2) ibogaine shows a large accumulation in adipose tissue, consistent with its lipophilic nature, and 3) persistence of the drug in fat may contribute to a long duration of action.
来源:Hazardous Substances Data Bank (HSDB)
吸收、分配和排泄
作者们报告了在一例48岁的白人男性体内,主要代谢物为诺伊波加因伊波加因的组织分布情况。该男性有药物滥用史,因摄入自非洲伊波加灌木的根皮而导致的中毒,在其家中被发现死亡。利用完全验证的液相色谱-电喷雾质谱法对组织和体液中的伊波加因和诺伊波加因进行了量化。除了心脏组织外,所有调查的组织中均发现了伊波加因和诺伊波加因。在脾脏、肝脏、大脑和肺中发现了最高浓度的药物。伊波加因和诺伊波加因在脾脏、肝脏、大脑和肺中的组织/锁骨下血液浓度比分别为1.78、3.75、1.16和4.64,以及0.83、2.43、0.90和2.69。在前列腺组织中发现了这两种药物的非常低浓度。伊波加因和诺伊波加因都会分泌到胆汁中并穿越血脑屏障。在大多数研究组织中还检测到了另外四种化合物。其中一种被确认为伊波加胺。不幸的是,由于缺乏参考物质,作者们无法确认另外三种化合物的身份。其中两种可能归因于以下氧化产物:伊波托辛和去甲氧基伊波托辛。第三种化合物可能是伊波加林。
/The authors/ report ... the tissue distribution of ibogaine and noribogaine, the main metabolite of ibogaine, in a 48-year-old Caucasian male, with a history of drug abuse, found dead at his home after a poisoning involving the ingestion of root bark from the shrub Tabernanthe iboga. Ibogaine and noribogaine were quantified in tissues and fluids using a fully validated liquid chromatography-electrospray mass spectrometry method. Apart from cardiac tissue, ibogaine and noribogaine were identified in all matrices investigated. The highest concentrations were found in spleen, liver, brain, and lung. The tissue/subclavian blood concentration ratios averaged 1.78, 3.75, 1.16, and 4.64 for ibogaine and 0.83, 2.43, 0.90, and 2.69 for noribogaine for spleen, liver, brain, and lung, respectively. Very low concentrations of the two drugs were found in the prostatic tissue. Both ibogaine and noribogaine are secreted in the bile and cross the blood-brain barrier. Four other compounds were detected in most of the studied matrices. One of them was identified as ibogamine. Unfortunately, /the authors/ were not able to positively identify the other three compounds because of the unavailability of reference substances. Two of them could possibly be attributed to the following oxidation products: iboluteine and desmethoxyiboluteine. The third compound could be ibogaline.
来源:Hazardous Substances Data Bank (HSDB)

安全信息

  • 危险等级:
    6.1(b)
  • 危险品标志:
    F,T
  • 安全说明:
    S16,S36/37,S45,S7
  • 危险类别码:
    R11,R23/24/25,R39/23/24/25
  • 包装等级:
    III
  • 危险类别:
    6.1(b)
  • 危险品运输编号:
    UN 1544

SDS

SDS:87187a8c938c61704533069b8bd086d8
查看

同类化合物

马山茶碱 非洲伏康树碱 长春质碱 老刺木胺 老刺木任 硫酸长春质碱 海尼山辣椒碱羟基假吲哚 榴花碱 柳黄酸 伏康京碱 伊菠胺-18-羧酸甲酯 伊菠胺 伊菠加因盐酸盐 伊博格碱 7-羟基-1-去氢老刺木碱 20-羟基榴花碱 14-((3alpha)-17-甲氧基-17-氧代派利文碱-3-基)-伊菠胺-18-羧酸甲酯 13-甲氧基-14-[(3A)-17-甲氧基-17-氧代派利文碱-3-基]-伊菠胺-18-羧酸甲酯 13-甲氧基-12-[(3a)-17-甲氧基-17-氧代派利文碱-3-基]-伊菠胺-18-羧酸甲酯 12-((3alpha)-17-甲氧基-17-氧代派利文碱-3-基)-伊菠胺-18-羧酸甲酯 11-羟基狗牙花定 10-羟基狗牙花定 (4a,20S)-20-羟基伊菠胺-18-羧酸甲酯 (2S)-1,2,3,4,4abeta,5,6,7,7a,12bbeta-十氢-4alpha-(1-羟基乙基)-9-甲氧基-2alpha,5alpha-甲桥吲哚并[3,2-d][1]苯并氮杂卓-7alpha-醇 4,20-Dehydrovoacangin 17a,17a,18-trideuterio-12,13-dimethoxy-17a-homo-ibogamine Conodiparine A Hydroxyindolenin von Coronaridin (+/-)-(phenylsulfonyl)50nor-15-oxocoronaridine methyl (6R,6aS,7S,8R,9S)-8-acetoxy-7-ethyl-13a-hydroxy-6a,7,9,10,13,13a-hexahydro-8H-6,9-methanopyrido[1',2':1,2]azepino[4,5-b]indole-6(12H)-carboxylate 20-epi-15-oxocoronaridine 15-S-methylcatharanthine 15β-(tosyloxy)coronaridine N-demethylvoacamine Voacanginol-19,19,22,22-d(4) noribogaine phosphate Isovoacangin-19-d(1) noribogaine sulfate (6R,6aS,7S,9R)-2-((tert-butyldimethylsilyl)oxy)-N-(2-(dimethylamino)ethyl)-7-ethyl-6,6a,7,8,9,10,12,13-octahydro-5H-6,9-methanopyrido[1',2':1,2]azepino[4,5-b]indole-5-carboxamide Coronaridin-19-d(1) 13-(4-acetyl-16-methoxycarbonyl-17,22-dinor-vobasan-3-yl)-12-methoxy-ibogamine-18-carboxylic acid methyl ester Dihydrocatharanthinol-O-mesylat 2-Methoxyethyl 21-methoxyibogamine-18-carboxylate 7-ethyl-6-(toluene-4-sulfonyloxymethyl)-6,6a,7,8,9,10,12,13-octahydro-5H-6,9-methano-pyrido[1',2':1,2]azepino[4,5-b]indole Isovoacangin-12,14,19-d(3) dideuterio-(12,13-dimethoxy-ibogamin-18-yl)-methanol