Unexpected Preference of the <i>E. coli</i> Translation System for the Ester Bond during Incorporation of Backbone-Elongated Substrates
作者:Shinsuke Sando、Kenji Abe、Nobuhiko Sato、Toshihiro Shibata、Keigo Mizusawa、Yasuhiro Aoyama
DOI:10.1021/ja068033n
日期:2007.5.1
There have been recent advances in the ribosomal synthesis of various molecules composed of nonnatural ribosomal substrates. However, the ribosome has strict limitations on substrates with elongated backbones. Here, we show an unexpected loophole in the E. coli translation system, based on a remarkable disparity in its selectivity for beta-amino/hydroxy acids. We challenged beta-hydroxypropionic acid (beta-HPA), which is less nucleophilic than beta-amino acids but free from protonation, to produce a new repertoire of ribosome-compatible but main-chain-elongated substrates. PAGE analysis and mass-coupled S-tag assays of amber suppression experiments using yeast suppressor tRNA(CUA)(Phe) confirmed the actual incorporation of beta-HPA into proteins/oligopeptides. We investigated the side-chain effects of beta-HPA and found that the side chain at position alpha and R stereochemistry of the beta-substrate is preferred and even notably enhances the efficiency of incorporation as compared to the parent substrate. These results indicate that the E. coli translation machinery can utilize main-chain-elongated substrates if the pK(a) of the substrate is appropriately chosen.