2-(Quinuclidin-3-yl)pyrido[4,3-b]indol-1-ones and isoquinolin-1-ones. Potent conformationally restricted 5-HT3 receptor antagonists
摘要:
Several series of N-(quinuclidin-3-yl)aryl and heteroaryl-fused pyridones were synthesized and evaluated for 5-HT3 receptor affinity. In the heteroaryl series, 2-(quinuclidin-3-yl)tetrahydropyrido-[4,3-b]indol-1-one (8a) and the 4,5-alkano-bridged analogues (14 and 15) displayed high 5-HT3 receptor affinity with pK(i) values > 9. The (3S)-quinuclidinyl isomers had > 10 fold higher affinity than the (3R)-isomers. In a series of 2-quinuclidin-3-yl)isoquinolin-1-ones, derivatives substituted with small lipophilic groups (25b-e) and with 4,5-alkano-bridges (34-36) also displayed high affinity. In particular, the hexahydro-1H-benz[de]isoquinolinone (S,S)-37 was the highest affinity 5-HT3 receptor ligand prepared (pK(i) 10.4). A number of the high affinity ligands were shown to be potent 5-HT3 receptor antagonists in vivo as determined by inhibition of the B-J reflex in the anesthetized rat. Again, (S,S)-37 was the most active agent tested (ID50 0.02 mug/kg iv), and this compound was also potent in blocking cisplatin-induced emesis in both the ferret and the dog. Computer modeling studies were performed, and previously reported 5-HT3 receptor antagonist pharmacophore models were refined to include a key lipophilic binding domain.
作者:Richard T. Arnold、Robert Buckles、Janet Stoltenberg
DOI:10.1021/ja01230a015
日期:1944.2
US7662750B2
申请人:——
公开号:US7662750B2
公开(公告)日:2010-02-16
[EN] PROTEIN-PROTEIN INTERACTION ANTAGONIST SCREENING LIBRARIES BASED UPON 1,4-DISUBSTITUTED NAPHTHALENES AND RELATED SCAFFOLDS<br/>[FR] BANQUES DE CRIBLAGE D'ANTAGONISTES DE L'INTERACTION PROTEINE-PROTEINE A BASE DE NAPHTALENES 1,4-DISUBSTITUES ET STRUCTURES D'ECHAFAUDAGE ASSOCIEES
申请人:UNIV NEW YORK STATE RES FOUND
公开号:WO2005057171A2
公开(公告)日:2005-06-23
The present invention relates to 1,4-disubstituted naphthalene scaffold compounds and other closely related scaffold compounds. The present invention also relates to combinatorial libraries of such compounds. In addition, the present invention relates to a method of identifying a protein-protein interaction antagonist. The method first involves providing a compound as described herein. Next, the compound is contacted with interacting proteins of a protein-protein interaction target complex, whereby the compound is allowed to compete with the interacting proteins. Then, the activity of the compound for inhibiting formation of the protein-protein interaction target complex is measured. Finally, the compound that inhibits formation of the protein-protein interaction target complex is identified as a protein-protein interaction antagonist. Also disclosed is a method for modulating a protein-protein interaction. The method involves contacting interacting proteins of a protein-protein interaction target with a compound as described herein, whereby the protein-protein interaction between the interacting proteins is modulated.