Synthesis and evaluation of antiproliferative activity of substituted N-(9-oxo-9H-xanthen-4-yl)benzenesulfonamides
摘要:
Several novel N-(9-oxo-9H-xanthen-4-yl)benzenesulfonamide derivatives were prepared as potential antiproliferative agents. The in vitro antiproliferative activity of the synthesized compounds was investigated against a panel of tumor cell lines including breast cancer cell lines (MDA-MB-231, T-47D) and neuroblastoma cell line (SK-N-MC) using MTT colorimetric assay. Etoposide, a well-known anticancer drug, was used as a positive standard drug. Among synthesized compounds, 4-methoxy-N-(9-oxo-9H-xanthen-4-yl)benzenesulfonamide (5i) showed the highest antiproliferative activity against MDA-MB-231, T-47D, and SK-N-MC cells. Furthermore, pentafluoro derivatives 5a and 6a exhibited higher antiproliferative activity than doxorubicin against human leukemia cell line (CCRF-CEM) and breast adenocarcinoma (MDA-MB-468) cells. Structure-activity relationship studies revealed that xanthone benzenesulfonamide hybrid compounds can be used for the development of new lead anticancer agents. (C) 2013 Elsevier Ltd. All rights reserved.
Synthesis and evaluation of antiproliferative activity of substituted N-(9-oxo-9H-xanthen-4-yl)benzenesulfonamides
摘要:
Several novel N-(9-oxo-9H-xanthen-4-yl)benzenesulfonamide derivatives were prepared as potential antiproliferative agents. The in vitro antiproliferative activity of the synthesized compounds was investigated against a panel of tumor cell lines including breast cancer cell lines (MDA-MB-231, T-47D) and neuroblastoma cell line (SK-N-MC) using MTT colorimetric assay. Etoposide, a well-known anticancer drug, was used as a positive standard drug. Among synthesized compounds, 4-methoxy-N-(9-oxo-9H-xanthen-4-yl)benzenesulfonamide (5i) showed the highest antiproliferative activity against MDA-MB-231, T-47D, and SK-N-MC cells. Furthermore, pentafluoro derivatives 5a and 6a exhibited higher antiproliferative activity than doxorubicin against human leukemia cell line (CCRF-CEM) and breast adenocarcinoma (MDA-MB-468) cells. Structure-activity relationship studies revealed that xanthone benzenesulfonamide hybrid compounds can be used for the development of new lead anticancer agents. (C) 2013 Elsevier Ltd. All rights reserved.