摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

| 1292802-63-1

中文名称
——
中文别名
——
英文名称
——
英文别名
——
化学式
CAS
1292802-63-1
化学式
C13H9ClFN3O
mdl
——
分子量
277.685
InChiKey
XKVIJFAECXOCFJ-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    3.63
  • 重原子数:
    19.0
  • 可旋转键数:
    3.0
  • 环数:
    3.0
  • sp3杂化的碳原子比例:
    0.08
  • 拓扑面积:
    50.95
  • 氢给体数:
    1.0
  • 氢受体数:
    4.0

上下游信息

  • 下游产品
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    参考文献:
    名称:
    Synthesis and biological evaluation of 2,4-diaminoquinazoline derivatives as novel heat shock protein 90 inhibitors
    摘要:
    Novel 2,4-diaminoquinazoline derivatives originating from a virtual screening approach were designed, synthesized and their biological activities as heat shock protein 90 (Hsp90) inhibitors were evaluated. The prepared compounds exhibited significant anti-proliferative activities against DU-145, HT-29, HCT-116, A375P and MCF-7 cancer cell lines. The selected compounds were tested against Her2, a client protein of Hsp90, and showed significant reduction in Her2 protein expression. Compound 6b was found the most potent, reduced Her2 protein expression levels and induced Hsp70 protein expression levels significantly. (C) 2011 Elsevier Ltd. All rights reserved.
    DOI:
    10.1016/j.bmcl.2011.01.117
  • 作为产物:
    描述:
    2-氨基-5-氟苯甲酸甲酯三氯氧磷 作用下, 以 乙醇苯酚 为溶剂, 生成
    参考文献:
    名称:
    Synthesis and biological evaluation of 2,4-diaminoquinazoline derivatives as novel heat shock protein 90 inhibitors
    摘要:
    Novel 2,4-diaminoquinazoline derivatives originating from a virtual screening approach were designed, synthesized and their biological activities as heat shock protein 90 (Hsp90) inhibitors were evaluated. The prepared compounds exhibited significant anti-proliferative activities against DU-145, HT-29, HCT-116, A375P and MCF-7 cancer cell lines. The selected compounds were tested against Her2, a client protein of Hsp90, and showed significant reduction in Her2 protein expression. Compound 6b was found the most potent, reduced Her2 protein expression levels and induced Hsp70 protein expression levels significantly. (C) 2011 Elsevier Ltd. All rights reserved.
    DOI:
    10.1016/j.bmcl.2011.01.117
点击查看最新优质反应信息

文献信息

  • Discovery of Quinazolines as Histamine H<sub>4</sub> Receptor Inverse Agonists Using a Scaffold Hopping Approach
    作者:Rogier A. Smits、Iwan J. P. de Esch、Obbe P. Zuiderveld、Joachim Broeker、Kamonchanok Sansuk、Elena Guaita、Gabriella Coruzzi、Maristella Adami、Eric Haaksma、Rob Leurs
    DOI:10.1021/jm800876b
    日期:2008.12.25
    From a series of small fragments that was designed to probe the histamine H-4 receptor (H4R), we previously described quinoxaline-containing fragments that were grown into high affinity H4R ligands in a process that was guided by pharmacophore modeling. With a scaffold hopping exercise and using the same in silico models, we now report the identification and optimization of a series of quinazoline-containing H4R compounds. This approach led to the discovery of 6-chloi-o-N-(furan-3-yl)methyl)2-(4-methylpiperzin-1-yl)quinazolin-4-amine (VUF10499, 54) and 6-chloro-2-(4-methylpiperazin-1-yl)-N-(thiophen-2-ylmethyl)quinazolin-4-amine (VUF10497, 55) as potent human H4R inverse agonists (pK(i) = 8.12 and 7.57, respectively). Interestingly, both compounds also possess considerable affinity for the human histamine Hi receptor (H1R) and therefore represent a novel class of dual action H1R/H4R ligands, a profile that potentially leads to added therapeutic benefit. Compounds from this novel series of quirlazolines are antagonists at the rat H4R and were found to possess anti-inflammatory properties in vivo in the rat.
查看更多