摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

[(2R,3R)-1-[bis(4-methoxyphenyl)-phenylmethoxy]-3-chloro-2,6-dimethylhept-5-en-2-yl]oxy-triethylsilane | 1027898-42-5

中文名称
——
中文别名
——
英文名称
[(2R,3R)-1-[bis(4-methoxyphenyl)-phenylmethoxy]-3-chloro-2,6-dimethylhept-5-en-2-yl]oxy-triethylsilane
英文别名
——
[(2R,3R)-1-[bis(4-methoxyphenyl)-phenylmethoxy]-3-chloro-2,6-dimethylhept-5-en-2-yl]oxy-triethylsilane化学式
CAS
1027898-42-5
化学式
C36H49ClO4Si
mdl
——
分子量
609.321
InChiKey
QDIHEGTXCOLUGC-VSJLXWSYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    9.76
  • 重原子数:
    42
  • 可旋转键数:
    16
  • 环数:
    3.0
  • sp3杂化的碳原子比例:
    0.44
  • 拓扑面积:
    36.9
  • 氢给体数:
    0
  • 氢受体数:
    4

上下游信息

  • 下游产品
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    参考文献:
    名称:
    Total Syntheses of the Cytotoxic Marine Natural Product, Aplysiapyranoid C1
    摘要:
    The first total syntheses of the cytotoxic marine natural product, aplysiapyranoid C, 1c, are reported. The Wittig reaction of 4-methyl-3-pentenyltriphenylphosphorane with the THP ether of hydroxyacetone gave in 88% yield the Z-alkene 4 which was hydrolyzed to the alcohol 5 in 72% yield. Sharpless asymmetric epoxidation of 5 afforded the epoxy alcohol 6 in 91% yield and 81% ee, Opening of the epoxide of 6 with ammonium chloride in DMSO gave in 76% yield the chloro diol 7 which was converted to the primary TBS ether 8 in 95% yield. Opening of the epoxy alcohol 6 with HCl and Ti(OiPr)(4) afforded the desired chloro diol 7 as the minor product along with the rearranged chloromethyl diol 9. This compound is presumably formed by opening of the protonated epoxide to give a butenyl cation which rearranges to the cyclopropylcarbinyl cation and is then trapped by chloride ion at the unsubstituted cyclopropyl carbon, regenerating the alkene. Cyclization of the TBS ether 8 with tetrabromocyclohexadienone (TBCO) afforded a mixture of all four possible cyclization products, the desired tetrahydropyrans 11a,b and the tetrahydrofurans 12a,b with the former being isolated in 70% yield. Hydrolysis of the TBS ether afforded the primary alcohols from which the desired isomer, 13, could be isolated (24% overall from 8), Swern oxidation furnished the aldehyde 14 which was subjected to the Takai chlorovinylation to give a mixture of aplysiapyranoid C Ic and the reduced product, dechloroaplysiapyranoid C 15. This dechlorination under these conditions is quite unusual. A second synthesis of aplysiapyranoid C avoided this problem. Selective protection of the more hindered tertiary alcohol of the chloro diol 7 afforded the primary alcohol 16 in which the tertiary alcohol was protected as the triethylsilyl ether. Swern oxidation, Takai reaction, and desilylation gave the dichloro alkenol 17 in 52% overall yield. In this case, only a small amount of the corresponding dechlorinated product was obtained. Final cyclization of 17 with TBCO afforded aplysiapyranoid C Ic as the major product in an isolated yield of 43%. Thus we have completed two total syntheses of aplysiapyranoid C Ic from the simple bromide 2 in eight or nine steps and good overall yield.
    DOI:
    10.1021/jo972228j
  • 作为产物:
    参考文献:
    名称:
    Total Syntheses of the Cytotoxic Marine Natural Product, Aplysiapyranoid C1
    摘要:
    The first total syntheses of the cytotoxic marine natural product, aplysiapyranoid C, 1c, are reported. The Wittig reaction of 4-methyl-3-pentenyltriphenylphosphorane with the THP ether of hydroxyacetone gave in 88% yield the Z-alkene 4 which was hydrolyzed to the alcohol 5 in 72% yield. Sharpless asymmetric epoxidation of 5 afforded the epoxy alcohol 6 in 91% yield and 81% ee, Opening of the epoxide of 6 with ammonium chloride in DMSO gave in 76% yield the chloro diol 7 which was converted to the primary TBS ether 8 in 95% yield. Opening of the epoxy alcohol 6 with HCl and Ti(OiPr)(4) afforded the desired chloro diol 7 as the minor product along with the rearranged chloromethyl diol 9. This compound is presumably formed by opening of the protonated epoxide to give a butenyl cation which rearranges to the cyclopropylcarbinyl cation and is then trapped by chloride ion at the unsubstituted cyclopropyl carbon, regenerating the alkene. Cyclization of the TBS ether 8 with tetrabromocyclohexadienone (TBCO) afforded a mixture of all four possible cyclization products, the desired tetrahydropyrans 11a,b and the tetrahydrofurans 12a,b with the former being isolated in 70% yield. Hydrolysis of the TBS ether afforded the primary alcohols from which the desired isomer, 13, could be isolated (24% overall from 8), Swern oxidation furnished the aldehyde 14 which was subjected to the Takai chlorovinylation to give a mixture of aplysiapyranoid C Ic and the reduced product, dechloroaplysiapyranoid C 15. This dechlorination under these conditions is quite unusual. A second synthesis of aplysiapyranoid C avoided this problem. Selective protection of the more hindered tertiary alcohol of the chloro diol 7 afforded the primary alcohol 16 in which the tertiary alcohol was protected as the triethylsilyl ether. Swern oxidation, Takai reaction, and desilylation gave the dichloro alkenol 17 in 52% overall yield. In this case, only a small amount of the corresponding dechlorinated product was obtained. Final cyclization of 17 with TBCO afforded aplysiapyranoid C Ic as the major product in an isolated yield of 43%. Thus we have completed two total syntheses of aplysiapyranoid C Ic from the simple bromide 2 in eight or nine steps and good overall yield.
    DOI:
    10.1021/jo972228j
点击查看最新优质反应信息

文献信息

  • Total Syntheses of the Cytotoxic Marine Natural Product, Aplysiapyranoid C<sup>1</sup>
    作者:Michael E. Jung、Bruce T. Fahr、Derin C. D'Amico
    DOI:10.1021/jo972228j
    日期:1998.5.1
    The first total syntheses of the cytotoxic marine natural product, aplysiapyranoid C, 1c, are reported. The Wittig reaction of 4-methyl-3-pentenyltriphenylphosphorane with the THP ether of hydroxyacetone gave in 88% yield the Z-alkene 4 which was hydrolyzed to the alcohol 5 in 72% yield. Sharpless asymmetric epoxidation of 5 afforded the epoxy alcohol 6 in 91% yield and 81% ee, Opening of the epoxide of 6 with ammonium chloride in DMSO gave in 76% yield the chloro diol 7 which was converted to the primary TBS ether 8 in 95% yield. Opening of the epoxy alcohol 6 with HCl and Ti(OiPr)(4) afforded the desired chloro diol 7 as the minor product along with the rearranged chloromethyl diol 9. This compound is presumably formed by opening of the protonated epoxide to give a butenyl cation which rearranges to the cyclopropylcarbinyl cation and is then trapped by chloride ion at the unsubstituted cyclopropyl carbon, regenerating the alkene. Cyclization of the TBS ether 8 with tetrabromocyclohexadienone (TBCO) afforded a mixture of all four possible cyclization products, the desired tetrahydropyrans 11a,b and the tetrahydrofurans 12a,b with the former being isolated in 70% yield. Hydrolysis of the TBS ether afforded the primary alcohols from which the desired isomer, 13, could be isolated (24% overall from 8), Swern oxidation furnished the aldehyde 14 which was subjected to the Takai chlorovinylation to give a mixture of aplysiapyranoid C Ic and the reduced product, dechloroaplysiapyranoid C 15. This dechlorination under these conditions is quite unusual. A second synthesis of aplysiapyranoid C avoided this problem. Selective protection of the more hindered tertiary alcohol of the chloro diol 7 afforded the primary alcohol 16 in which the tertiary alcohol was protected as the triethylsilyl ether. Swern oxidation, Takai reaction, and desilylation gave the dichloro alkenol 17 in 52% overall yield. In this case, only a small amount of the corresponding dechlorinated product was obtained. Final cyclization of 17 with TBCO afforded aplysiapyranoid C Ic as the major product in an isolated yield of 43%. Thus we have completed two total syntheses of aplysiapyranoid C Ic from the simple bromide 2 in eight or nine steps and good overall yield.
查看更多

同类化合物

(3-三苯基甲氨基甲基)吡啶 非马沙坦杂质1 隐色甲紫-d6 隐色孔雀绿-d6 隐色孔雀绿 隐色乙基结晶紫 降钙素杂质10 酸性黄117 酸性蓝119 酚酞啉 酚酞二硫酸钾水合物 萘,1-甲氧基-3-甲基 苯酚,4-(1,1-二苯基丙基)- 苯甲醇,4-溴-a-(4-溴苯基)-a-苯基- 苯甲酸,4-(羟基二苯甲基)-,甲基酯 苯甲基N-[(2(三苯代甲基四唑-5-基-1,1联苯基-4-基]-甲基-2-氨基-3-甲基丁酸酯 苯基双-(对二乙氨基苯)甲烷 苯基二甲苯基甲烷 苯基二[2-甲基-4-(二乙基氨基)苯基]甲烷 苯基{二[4-(三氟甲基)苯基]}甲醇 苯基-二(2-羟基-5-氯苯基)甲烷 苄基2,3,4-三-O-苄基-6-O-三苯甲基-BETA-D-吡喃葡萄糖苷 苄基 5-氨基-5-脱氧-2,3-O-异亚丙基-6-O-三苯甲基呋喃己糖苷 苄基 2-乙酰氨基-2-脱氧-6-O-三苯基-甲基-alpha-D-吡喃葡萄糖苷 苄基 2,3-O-异亚丙基-6-三苯甲基-alpha-D-甘露呋喃糖 膦酸,1,2-乙二基二(磷羧基甲基)亚氨基-3,1-丙二基次氮基<三价氮基>二(亚甲基)四-,盐钠 脱氢奥美沙坦-2三苯甲基奥美沙坦脂 美托咪定杂质28 绿茶提取物茶多酚陕西龙孚 结晶紫 磷,三(4-甲氧苯基)甲基-,碘化 碱性蓝 硫代硫酸氢 S-[2-[(3,3,3-三苯基丙基)氨基]乙基]酯 盐酸三苯甲基肼 白孔雀石绿-d5 甲酮,(反-4-氨基-4-甲基环己基)-4-吗啉基- 甲基三苯基甲基醚 甲基6-O-(三苯基甲基)-ALPHA-D-吡喃甘露糖苷三苯甲酸酯 甲基3,4-O-异亚丙基-2-O-甲基-6-O-三苯甲基吡喃己糖苷 甲基2-甲基-N-{[4-(三氟甲基)苯基]氨基甲酰}丙氨酸酸酯 甲基2,3,4-三-O-苯甲酰基-6-O-三苯甲基-ALPHA-D-吡喃葡萄糖苷 甲基2,3,4-三-O-苄基-6-O-三苯甲基-ALPHA-D-吡喃葡萄糖苷 甲基2,3,4-三-O-(苯基甲基)-6-O-(三苯基甲基)-ALPHA-D-吡喃半乳糖苷 甲基-6-O-三苯基甲基-alpha-D-吡喃葡萄糖苷 甲基(1-trityl-1H-imidazol-4-yl)乙酸酯 甲基 2,3,4-三-O-苄基-6-O-三苯基甲基-ALPHA-D-吡喃甘露糖苷 环丙胺,1-(1-甲基-1-丙烯-1-基)- 溶剂紫9 溴化N,N,N-三乙基-2-(三苯代甲基氧代)乙铵 海涛林