摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

4-[(2R,4aR,8aR)-4-trimethylsilyl-4a,5,6,7,8,8a-hexahydro-2H-chromen-2-yl]butan-1-ol | 132048-30-7

中文名称
——
中文别名
——
英文名称
4-[(2R,4aR,8aR)-4-trimethylsilyl-4a,5,6,7,8,8a-hexahydro-2H-chromen-2-yl]butan-1-ol
英文别名
——
4-[(2R,4aR,8aR)-4-trimethylsilyl-4a,5,6,7,8,8a-hexahydro-2H-chromen-2-yl]butan-1-ol化学式
CAS
132048-30-7
化学式
C16H30O2Si
mdl
——
分子量
282.498
InChiKey
CEKLMJGSFDUKJO-RBSFLKMASA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    3.91
  • 重原子数:
    19.0
  • 可旋转键数:
    5.0
  • 环数:
    2.0
  • sp3杂化的碳原子比例:
    0.88
  • 拓扑面积:
    29.46
  • 氢给体数:
    1.0
  • 氢受体数:
    2.0

反应信息

点击查看最新优质反应信息

文献信息

  • Enantioselective synthesis of the bottom half of chlorothricolide. 3. Studies of the steric directing group strategy for stereocontrol in intramolecular Diels-Alder reactions
    作者:William R. Roush、Masanori Kageyama、Renata Riva、Bradley B. Brown、Joseph S. Warmus、Kevin J. Moriarty
    DOI:10.1021/jo00003a049
    日期:1991.2
    The intramolecular Diels-Alder reactions of a series of C(7)-alkoxy-substituted 2(E),8(Z),10(E)-undecatrienoates and trienals containing removable C(9)-Br or C(9)-SiMe3 substituents (11, 12, 13, 33, 42, 43, 44, 45) were studied as part of a program directed toward the total synthesis of the bottom half of chlorothricolide. The IMDA reaction of trienoate 3 that lacks a C(9) substituent had previously been shown to cyclize with poor stereoselectivity to a mixture of four cycloadducts. It was expected that the IMDA reactions of trienes containing C(9) substituents (i.e., steric directing groups) would proceed with substantially enhanced stereoselectivity via trans-fused transition state A owing to nonbonded interactions that the steric directing groups experience in the competitive transition states B-D. Cis-fused transition states C and D suffer from serious interactions between C(9)-X and the axial C(6)-H, while trans-fused transition state B is destabilized by a 1,3-eclipsing interaction with the C(7)-alkoxyl group. Only the desired transition state, trans-fused transition state A, suffers from no serious interactions involving the C(9) steric directing group. These predictions were verified experimentally: the trans-fused cycloadduct deriving from A was the major product in all cases. Stereoselectivity for trans-fused cycloadducts was consistently greater, using C(9)-TMS directing groups compared to C(9)-Br substituted systems (for IMDA reactions under analogous conditions), but the C(9)-Br group appeared to have a greater influence on the partition between transition states A and B (see Table I). A surprising aspect of this study, however, is that significant amounts of cis-fused cycloadducts were obtained from the thermal cyclizations of the above-named trienes (12-45%), and this pathway was not entirely suppressed even in the Lewis acid catalyzed cycloadditions of trienals 44 and 45 (5-9% of cis fused cycloadduct). The results with TMS-substituted trienes 33, 42, and 44 thus are in disagreement with an earlier report by Boeckman and Barta (ref 5f) that the IMDA reaction of 33 gives ''a single cycloadduct (> 100:1).'' The cis-fused diastereomers most probably arise via boat-like transition state E rather than the chair-like transition state C. Cis-fused cycloadducts were not observed in the IMDA reaction of TMS-substituted triene 61 that lacks a C(7)-alkoxy substituent, suggesting that the C(7)-alkoxy groups electronically deactivate trans-fused transition state A such that boat-like transition state E is competitive only with substrates containing such C(7)-alkoxy substituents. Data are also presented that show that the C(9)-TMS substituents lead to an increase in reactivity (e.g., the IMDA reaction of 61 that proceeds at ambient temperature and the acid-catalyzed cyclocondensation of TMS diene aldehyde 63). This study defines bromo trienoate 43 as the optimal precursor to the bottom half unit (2) of chlorothricolide, even though the IMDA reaction of 43 is less selective than that of TMS-substituted trienes 42 and 44. The synthesis of 43 (Figure 4) involving the Pd0-catalyzed cross-coupling reaction of dibromo olefin 35 and vinylboronate 37 is shorter and considerably more efficient than the syntheses of TMS trienes 42 and 44, and this compensates for the fact that 43 is the least selective IMDA substrate.Syntheses that proceed by way of TMS trienoates like 42 or TMS trienals like 44 become competitive only if a more efficient triene synthesis is devised.
查看更多

同类化合物

(3S,4R)-3-氟四氢-2H-吡喃-4-胺 鲁比前列素中间体 顺式-3-溴<2-(2)H>四氢吡喃 顺-4-氨基四氢吡喃-3-醇 顺-4-(四氢吡喃-2-氧)-2-丁烯-1-醇 顺-3-Boc-氨基-四氢吡喃-4-羧酸 锡烷,三丁基[3-[(四氢-2H-吡喃-2-基)氧代]-1-炔丙基]- 螺[金刚烷-2,2'-四氢吡喃]-4'-醇 蒿甲醚四氢呋喃乙酸酯 蒜味伞醇B 蒜味伞醇A 茉莉吡喃 苯基2,4-二氯-5-氨磺酰苯磺酸酯 苄基2,3-二-O-乙酰基-4-脱氧-4-C-硝基亚甲基-β-D-阿拉伯吡喃果糖苷 膜质菊内酯 红没药醇氧化物A 红没药醇氧化物 科立内酯 硅烷,(1,1-二甲基乙基)二甲基[[4-[(四氢-2H-吡喃-2-基)氧代]-5-壬炔基]氧代]- 甲磺酸酯-四聚乙二醇-四氢吡喃醚 甲基[(噁烷-3-基)甲基]胺 甲基6-氧杂双环[3.1.0]己烷-2-羧酸酯 甲基4-脱氧吡喃己糖苷 甲基3-脱氧-3-硝基-beta-L-核吡喃糖苷 甲基2,4,6-三脱氧-2,4-二-C-甲基吡喃葡己糖苷 甲基1,2-环戊烯环氧物 甲基-[2-吡咯烷-1-基-1-(四氢-吡喃-4-基)-乙基]-胺 甲基-(四氢吡喃-4-甲基)胺 甲基-(四氢吡喃-2-甲基)胺盐酸盐 甲基-(四氢吡喃-2-甲基)胺 甲基-(四氢-吡喃-3-基-胺 甲基-(四氢-吡喃-3-基)-胺盐酸盐 甲基-(4-吡咯烷-1-甲基四氢吡喃-4-基)-胺 甲基(5R)-3,4-二脱氧-4-氟-5-甲基-alpha-D-赤式-吡喃戊糖苷 环氧乙烷-2-醇乙酸酯 环己酮,6-[(丁基硫代)亚甲基]-2,2-二甲基-3-[(四氢-2H-吡喃-2-基)氧代]-,(3S)- 环丙基-(四氢-吡喃-4-基)-胺 玫瑰醚 独一味素B 溴-六聚乙二醇-四氢吡喃醚 氯菊素 氯丹环氧化物 氨甲酸,[[(四氢-2H-吡喃-2-基)氧代]甲基]-,乙基酯 氨甲酸,[(4-氨基四氢-2H-吡喃-4-基)甲基]-,1,1-二甲基乙基酯(9CI) 氧杂-3-碳酰肼 氧化氯丹 正-(四氢-4-苯基-2h-吡喃-4-基)乙酰胺 次甲霉素 A 桉叶油醇