Metabolism and Disposition of Verinurad, a Uric Acid Reabsorption Inhibitor, in Humans
作者:Caroline A. Lee、Chun Yang、Vishal Shah、Zancong Shen、David M. Wilson、Traci M. Ostertag、Jean-Luc Girardet、Jesse Hall、Michael Gillen
DOI:10.1124/dmd.117.078220
日期:2018.5
Verinurad (RDEA3170) is a second generation selective uric acid reabsorption inhibitor for the treatment of gout and asymptomatic hyperuricemia. Following a single oral solution of 10-mg dose of [14C]verinurad (500 μ Ci), verinurad was rapidly absorbed with a median time to occurrence of maximum observed concentration (Tmax) of 0.5 hours and terminal half-life of 15 hours. In plasma, verinurad constituted 21% of total radioactivity. Recovery of radioactivity in urine and feces was 97.1%. Unchanged verinurad was the predominant component in the feces (29.9%), whereas levels were low in the urine (1.2% excreted). Acylglucuronide metabolites M1 (direct glucuronidation) and M8 (glucuronidation of N-oxide) were formed rapidly after absorption of verinurad with terminal half-life values of approximately 13 and 18 hours, respectively. M1 and M8 constituted 32% and 31% of total radioactivity in plasma and were equimolar to verinurad on the basis of AUC ratios. M1 and M8 formed in the liver were biliary cleared with complete hydrolysis in the GI tract, as metabolites were not detected in the feces and/or efflux across the sinusoidal membrane; M1 and M8 accounted for 29.2% and 32.5% of the radioactive dose in urine, respectively. In vitro studies demonstrated that CYP3A4 mediated the formation of the N-oxide metabolite (M4), which was further metabolized by glucuronyl transferases (UGTs) to form M8, as M4 was absent in plasma and only trace levels were present in the urine. Several UGTs mediated the formation of M1, which could also be further metabolized by CYP2C8. Overall, the major clearance route of verinurad is metabolism via UGTs and CYP3A4 and CYP2C8.
Verinurad (RDEA3170) 是第二代选择性尿酸重吸收抑制剂,用于治疗痛风和无症状高尿酸血症。单次口服10毫克[14C]verinurad溶液(500μCi)后,verinurad被迅速吸收,最大观察浓度(Tmax)出现的中位时间为0.5小时,终末半衰期为15小时。在血浆中,verinurad 占总放射性的 21%。尿液和粪便中放射性回收率为97.1%。未变化的 verinurad 是粪便中的主要成分(29.9%),而尿液中的含量较低(排出的 1.2%)。 Verinurad 吸收后迅速形成酰基葡萄糖醛酸代谢物 M1(直接葡萄糖醛酸化)和 M8(N-氧化物葡萄糖醛酸化),终末半衰期值分别约为 13 和 18 小时。 M1 和 M8 占血浆总放射性的 32% 和 31%,根据 AUC 比值与 verinurad 等摩尔。肝脏中形成的 M1 和 M8 在胃肠道中通过胆汁清除并完全水解,因为在粪便中和/或穿过正弦膜流出时未检测到代谢物; M1和M8分别占尿液中放射性剂量的29.2%和32.5%。体外研究表明,CYP3A4 介导 N-氧化物代谢物 (M4) 的形成,该代谢物进一步被葡萄糖醛酸转移酶 (UGT) 代谢形成 M8,因为血浆中不存在 M4,尿液中仅存在微量水平。几种 UGT 介导 M1 的形成,M1 也可以被 CYP2C8 进一步代谢。总体而言,verinurad 的主要清除途径是通过 UGT 以及 CYP3A4 和 CYP2C8 进行代谢。