摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

tin (IV) chloride pentahydrate | 10026-06-9

中文名称
——
中文别名
——
英文名称
tin (IV) chloride pentahydrate
英文别名
tin tetrachloride pentahydrate;stannic chloride pentahydrate;tin chloride pentahydrate;SnCl4*5H2O;SnCl4;tin(IV) tetrachloride pentahydrate;tin tetrachloride;Tin chloride monohydrate;tetrachlorostannane;hydrate
tin (IV) chloride pentahydrate化学式
CAS
10026-06-9
化学式
Cl4Sn*5H2O
mdl
——
分子量
350.598
InChiKey
KKHJTSPUUIRIOP-UHFFFAOYSA-J
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 熔点:
    56 °C
  • 密度:
    2.040
  • 溶解度:
    极易溶于H2O;溶于乙醇
  • 稳定性/保质期:
    <b> <p></p> </b>

计算性质

  • 辛醇/水分配系数(LogP):
    -13.19
  • 重原子数:
    6
  • 可旋转键数:
    0
  • 环数:
    0.0
  • sp3杂化的碳原子比例:
    0.0
  • 拓扑面积:
    1
  • 氢给体数:
    1
  • 氢受体数:
    5

安全信息

  • 危险等级:
    8
  • 危险品标志:
    C
  • 安全说明:
    S26,S36/37/39,S45,S61,S7/8
  • 危险类别码:
    R34,R52/53
  • WGK Germany:
    3
  • 海关编码:
    28273990
  • 危险品运输编号:
    UN 2440 8/PG 3
  • 危险类别:
    8
  • RTECS号:
    XP8870000
  • 包装等级:
    III
  • 危险标志:
    GHS05
  • 危险性描述:
    H314
  • 危险性防范说明:
    P260,P280,P303 + P361 + P353,P304 + P340 + P310,P305 + P351 + P338

SDS

SDS:3f00b6784d6fe97d8feadd38f53e9c02
查看

Section 1: Product Identification
Chemical Name: Tin (IV) chloride pentahydrate, 98%
CAS Registry Number: 10026-06-9
Formula: SnCl4.5H2O
EINECS Number: 231-588-9
Chemical Family: metal halide
Synonym: Stannic chloride pentahydrate, Tetrachlorostannane pentahydrate, Tin tetrachloride dihydrate

Section 2: Composition and Information on Ingredients
Ingredient CAS Number Percent ACGIH (TWA) OSHA (PEL)
Title Compound 10026-06-9 100% 2mg/m3 2mg/m3

Section 3: Hazards Identification
Emergency Overview: May be harmful by inhalation. Corrosive to skin and eyes.
Primary Routes of Exposure: Contact with skin and eyes. Inhalation of dust.
Eye Contact: Corrosive to the eyes.
Skin Contact: Causes burns to the skin.
May be harmful by inhalation. Forms hydrogen chloride when heated. Inhalation can lead to chemical burns to
Inhalation:
the respiratory tract.
Ingestion: No information is available on the acute physiological effects of ingestion.
Corrosive to skin, eyes and respiratory tract and causes eye, skin burns, dyspnea (breathing difficulty), and
Acute Health Affects:
pulmonary edema
Chronic Health Affects: Prolonged exposure to dust of tin compounds may result in benign pneumoconiosis.
NTP: No
IARC: No
OSHA: No

SECTION 4: First Aid Measures
Immediately flush the eyes with copious amounts of water for at least 10-15 minutes. A victim may need
Eye Exposure:
assistance in keeping their eye lids open. Get immediate medical attention.
Wash the affected area with water. Remove contaminated clothes if necessary. Seek medical assistance if
Skin Exposure:
irritation persists.
Remove the victim to fresh air. Closely monitor the victim for signs of respiratory problems, such as difficulty
Inhalation:
in breathing, coughing, wheezing, or pain. In such cases seek immediate medical assistance.
Seek medical attention immediately. Keep the victim calm. Give the victim water (only if conscious). Induce
Ingestion:
vomiting only if directed by medical personnel.

SECTION 5: Fire Fighting Measures
Flash Point: not applicable
Autoignition Temperature: none
Explosion Limits: none
Extinguishing Medium: None. Material is non-flammable.
If this product is involved in a fire, fire fighters should be equipped with a NIOSH approved positive pressure
Special Fire Fighting Procedures:
self-contained breathing apparatus and full protective clothing.
Hazardous Combustion and If involved in a fire this material may emit toxic fumes of hydrogen chloride.
Decomposion Products:
Unusual Fire or Explosion Hazards: No unusual fire or explosion hazards.

SECTION 6: Accidental Release Measures
To avoid raising dust, small spills may be mixed with diatomaceous earth, sand, vermiculite or other suitable
Spill and Leak Procedures:
inert material and swept up.

SECTION 7: Handling and Storage
Handling and Storage: Store solid in a tightly sealed container.

SECTION 8: Exposure Controls and Personal Protection
Eye Protection: Always wear approved safety glasses when handling a chemical substance in the laboratory.
Skin Protection: Wear protective clothing and gloves. Consult with glove manufacturer to determine the proper type of glove.
Ventilation: Solid may form a fine dust. If possible, handle the solid in an efficient fume hood.
If in form of fine dust and ventilation is not available a respirator should be worn. The use of respirators
Respirator:
requires a Respirator Protection Program to be in compliance with 29 CFR 1910.134.
Ventilation: Solid may form a fine dust. If possible, handle the solid in an efficient fume hood.
Additional Protection: No additional protection required.

SECTION 9: Physical and Chemical Properties
Color and Form: off-white lumps
Molecular Weight: 260.50 (350.61)
Melting Point: no data
Boiling Point: no data
Vapor Pressure: no data
Specific Gravity: no data
Odor: none
Solubility in Water: soluble

SECTION 10: Stability and Reactivity
Stability: air and moisture stable
Hazardous Polymerization: no hazardous polymerization
Conditions to Avoid: none
Incompatibility: active metals
Decomposition Products: water, metal oxychloride, metal oxide, and hydrogen chloride

SECTION 11: Toxicological Information
Intraperitoneal (rat); LD50: 120 mg/kg. Intravenous (mouse); LD50: 32 mg/kg. Human Lymphocyte;
RTECS Data:
Cytogenetic analysis: 2 mg/L. Human Lymphocyte; Sister chromatid exchange: 2 mg/L.
Carcinogenic Effects: no data
Mutagenic Effects: Negative data
Tetratogenic Effects: no data

SECTION 12: Ecological Information
Ecological Information: Harmful to aquatic organisms. May cause long-term adverse effects in the aquatic environment.

SECTION 13: Disposal Considerations
Disposal: Dispose of according to local, state and federal regulations.

SECTION 14: Transportation
Shipping Name (CFR): Stannic chloride, pentahydrate
Hazard Class (CFR): 8
Additional Hazard Class (CFR): NA
Packaging Group (CFR): III
UN ID Number (CFR): UN# 2440
Shipping Name (IATA): Stannic chloride, pentahydrate
Hazard Class (IATA): 8
Additional Hazard Class (IATA): NA
Packaging Group (IATA): III
UN ID Number (IATA): UN# 2440

SECTION 15: Regulatory Information
TSCA: Not listed in the TSCA inventory.
SARA (Title 313): Title compound not listed.
Second Ingredient: none


SECTION 16 - ADDITIONAL INFORMATION
N/A

制备方法与用途

简介

结晶氯化高锡,又称为结晶四氯化锡、氯化锡或四氯化锡,化学式为SnCl₄,相对分子质量260.53。它是一种无色发烟液体,呈酸性,并且能溶于水并放出大量热量。其稀溶液因水解会生成锡酸沉淀。该物质能够与醇、二硫化碳和松节油任意混合。四氯化锡对氯气的吸收能力很强,密度为2.23 g/cm³,熔点-33℃,沸点114℃,具有腐蚀性和毒性,主要用于有机锡制品的制备。

用途

四氯化锡应用广泛,能与多种有机物发生加成反应,如醇、醚、醛、酮、羧酸、酯和不饱和烃等,是合成甲基锡、丁基锡等有机锡化工产品的原料。此外,它还能被金属锡还原为氯化亚锡,并可用作生产二氧化锡或锡酸钠等无机锡化工产品。

制备

四氯化锡的制备方法主要是通过将含Sn>99%的精锡与氯气反应来实现。具体过程分为两种:一种是在熔化精锡的状态下进行反应,温度控制在约300℃(高于精锡的熔点232℃),产生的四氯化锡以气体形式从反应器中挥发出来,并通过冷凝器液化为液体产品;另一种方法则是在未熔化的固态精锡与氯气反应后分离出产物。整个过程需设置保温加热系统。

用途

用作分析试剂和媒染剂。 有机合成脱水剂,织物媒染剂。

类别

腐蚀物品

毒性分级

高毒

急性毒性
  • 腹注-大鼠 LD₅₀: 41毫克/公斤
  • 静注-小鼠 LD₅₀: 32毫克/公斤
储运特性

库房应通风、低温干燥,并与碱类分开存放。

灭火剂

二氧化碳、干粉。

职业标准

时间加权平均容许浓度(TLV-TWA):2 毫克(锡)/立方米; 短时间暴露极限值(STEL):4 毫克(锡)/立方米。

反应信息

  • 作为反应物:
    描述:
    tin (IV) chloride pentahydrate 在 polyethylene glycol 、 乙二胺四乙酸柠檬酸 作用下, 以 为溶剂, 生成 tin
    参考文献:
    名称:
    Sn-Bi无铅焊料的电沉积:复合剂对成分,附着力和枝晶形成的影响
    摘要:
    通过线性扫描伏安法(LSV)分析系统地研究了复杂试剂,包括柠檬酸,乙二胺四乙酸(EDTA)和聚乙二醇(PEG)对Sn-Bi合金电化学共沉积的影响。通过同时向电镀液中添加上述三种化合物,Bi离子的起始沉积电势明显移至负值,接近Sn离子。根据LSV结果,从典型溶液中镀Sn 4+ / Bi 3+的镀层通过扫描电子显微镜(SEM),能量色散光谱(EDS)和X射线衍射(XRD)分析来表征pH值为1,pH值为6.0以及络合剂的各种组合。从含0.4 M柠檬酸,1.0 M EDTA和0.2 M PEG的典型镀浴中成功镀出了30Sn–70Bi合金(以wt%计),这表明可能以其共晶点附近的成分镀Sn–Bi合金(42Sn–58Bi)。这三种复合剂的协同作用分别改善和抑制了沉积物的附着力和树枝状晶体的形成。与该组合相反,在其他组合中,从包含复合剂的典型镀液中获得了近乎纯净的Bi沉积物。
    DOI:
    10.1016/j.electacta.2007.09.002
  • 作为产物:
    描述:
    四氯化锡 作用下, 以 为溶剂, 生成 tin (IV) chloride pentahydrate
    参考文献:
    名称:
    Bontschev, Z.; Christov, D.; Burin, K., 1966, vol. 61, p. 115 - 121
    摘要:
    DOI:
  • 作为试剂:
    参考文献:
    名称:
    Facile synthesis of furoquinoline and effects on radical-induced oxidation of DNA
    摘要:
    The aim of this work was to clarify the influences of the position of hydroxyl group and furo[2,3-b] moiety on the antioxidant effectiveness of quinoline. Thus, 4-methyl-2,3-dihydrofuro[2,3-b]quinolin-6-ol (PFQ), 4-methyl-2,3-dihydrofuro[2,3-b]quinolin-8-ol (OFQ), and 4-methyl-2,3-dihydrofuro[2,3-b]quinolin-7-ol (MFQ) were synthesized by a recyclization reaction of 1-acetyl-N-phenylcyclopropanecarboxamide in the presence of SnCl4 as the catalyst. The antioxidant capacities of PFQ, OFQ, and MFQ were evaluated in the experimental system of the oxidation of DNA caused by Cu2+/glutathione (GSH), (OH)-O-aEuro cent, and 2,2'-azobis(2-amidinopropane hydrochloride) (AAPH). OFQ and PFQ were able to protect DNA against Cu2+/GSH- and (OH)-O-aEuro cent-induced oxidation because the furo[2,3-b] moiety was beneficial for stabilizing the produced furoquinoline radical. Moreover, MFQ can decrease the oxidation rate of AAPH-induced oxidation of DNA, while PFQ and OFQ can inhibit AAPH-induced oxidation of DNA for a period. The data obtained from AAPH-induced oxidation of DNA were treated by chemical kinetic method; it was found that PFQ and OFQ can trap 1.3 and 1.5 radicals, respectively. Therefore, the hydroxyl group at different positions changed the mechanism of furoquinoline in protecting DNA against radical-induced oxidation.Effects on Cu2+/glutathione-, (OH)-O-aEuro cent-, and peroxyl radical-induced oxidation of DNA.
    DOI:
    10.1007/s00044-012-0157-0
点击查看最新优质反应信息

文献信息

  • Thermal properties of H2SnCl6 complexes
    作者:Tadeusz Janiak、Jerzy Błażejowski
    DOI:10.1016/0040-6031(89)87045-5
    日期:1989.3
    Russell-Jones theory for the dissociative volatilization process and a standard approach based on the Arrhenius model. The values of the parameters characterizing the thermal properties of alkanaminium hexachlorostannates, i.e. temperatures of the thermal effects, and the thermochemical and kinetic constants of thermolysis, depend on the number, length and structure of the alkyl substituent. The essential
    摘要 热分析方法(DTA、TG 和 DTG)用于研究具有通式 [(CnH2n+1)pNH4-p]2SnCl6(其中 n = 1–4 和 p = 2–4)的无支链复合盐的热行为和其他几种环状和开链支链脂肪族链烷胺六氯锡酸盐。这些化合物的热解离通常可以使用等式来概括,其中 A 表示烷基(a = 0 和 s = 1 表示季铵盐,a = 1 和 s = 0 表示其他研究的化合物)。具有简单结构的衍生物的热解发生在一个步骤中并导致它们的完全挥发。其他化合物的分解,通常具有复杂的结构,伴随着副反应。实验 TG 曲线用于检查热解的热力学和动力学。热解离焓基于范特霍夫方程进行评估。导出的值与可用的文献数据一起用于确定盐的形成焓和晶格能。后者的数量也使用 Kapustinskii-Yatsimirskii 公式进行了检查。使用Jacobs 和Russell-Jones 解离挥发过程理论和基于Arrhenius
  • <i>In vitro</i> DNA binding, pBR322 cleavage and molecular docking studies of 1,2-diaminobenzene, dichloro glycyl glycinate tin(IV) and zirconium(IV) complexes
    作者:Waddhaah M. Alasbahy、Manal Shamsi
    DOI:10.1080/07391102.2021.1959402
    日期:2022.12.12
    Abstract De novo design and synthesis of complexes 1,2-diaminobenzene, dichloro glycyl glycinate tin(IV) and zirconium(IV), 1 and 2 as molecular drug entities were carried out. The structure elucidation of 1 and 2 was done by analytical techniques and spectroscopic methods viz. IR, UV–vis, 1H, 13C, 119Sn NMR, ESI–Mass and XRD techniques. In vitro DNA binding studies of 1 and 2 by various biophysical
    摘要 从头设计和合成络合物 1,2-二氨基苯、二氯甘氨酰甘氨酸锡 (IV) 和锆 (IV)、1和2作为分子药物实体。1和2的结构解析是通过分析技术和光谱方法完成的,即。IR、UV–vis、1 H、13 C、119 Sn NMR、ESI–Mass 和 XRD 技术。通过各种生物物理学技术对1和2进行体外DNA 结合研究,即进行了电子吸收、发射光谱和圆二色性测量,以评估它们作为化学治疗候选物的潜力;此外,还进行了 pBR322 质粒 DNA 切割研究和计算机辅助分子对接研究,以研究分子水平的机制途径和结合模式。观察到的结果表明,与主要通过静电结合模式的复合物2相比,复合物1表现出更大的 DNA 结合倾向。两种复合物的 pBR322 DNA 切割研究揭示了水解切割机制和 DNA 小沟结合,这是通过候选药物的分子对接研究确定的。 由 Ramaswamy H. Sarma 传达
  • Schiff base metal complexes of 4-methyl-1H-indol-3-carbaldehyde derivative as a series of potential antioxidants and antimicrobial: Synthesis, spectroscopic characterization and 3D molecular modeling
    作者:Ohyla A. EL-Gammal、Heba Alshater、Hanaa A. El-Boraey
    DOI:10.1016/j.molstruc.2019.05.101
    日期:2019.11
    mononuclear Fe(III), Cu(II), Cd(II), Sn(IV) and binuclear Ni(II) and Hg(II) complexes with the Schiff base ligand: (E)-N'-((4-methyl-1H-indol-3-yl)methylene) nicotinohydrazide were synthesized. The elucidation of the structure of the prepared compounds were performed by elemental analyses, magnetic measurements, thermogravimetry, 3D molecular modeling, molar conductance techniques and by various spectroscopic
    摘要 新型单核 Fe(III)、Cu(II)、Cd(II)、Sn(IV) 和双核 Ni(II) 和 Hg(II) 配合物与席夫碱配体:(E)-N'-((4 -甲基-1H-吲哚-3-基)亚甲基)烟酰肼被合成。通过元素分析、磁性测量、热重分析、3D 分子建模、摩尔电导技术和各种光谱(IR、1H NMR、UV-Visible、EPR)工具对所制备化合物的结构进行了阐明。通过配体及其金属配合物的 DPPH 扫描研究了体外抗氧化活性。结果表明,所有试验化合物都是优良的抗氧化剂,优于标准品(抗坏血酸)。[Sn(HL)Cl2(OH)2]·2H2O配合物(5)表现出最高的抗氧化活性。而且,配体及其金属配合物针对敏感生物体金黄色葡萄球菌作为革兰氏阳性菌、大肠杆菌作为革兰氏阴性菌和两株真菌(黄曲霉和白色念珠菌)进行筛选。结果表明,所有金属配合物均比无金属配体具有更高的抗菌活性,双核[Hg2(HL)Cl4]·E
  • Two types of lanthanide selenidostannates(<scp>iv</scp>) first prepared under the same solvothermal conditions
    作者:Jian Zhou、Hong Xiao、Hong-Ping Xiao、Tao Yang、Hua-Hong Zou、Xing Liu、Rong-Qing Zhao、Qiuling Tang
    DOI:10.1039/c4dt03099k
    日期:——
    adamantane-like [Sn4Se10]4− ions with binuclear lanthanide complex [Ln2(tepa)2(μ-OH)2Cl2]2+ ions as counterions. Although the solvothermal synthetic methods could result in the formation of various transition-metal chalcogenidometalates, such identical experimental conditions usually result in the only stable phases of lanthanide chalcogenidometalates. Hence, two different lanthanide selenidostannates(IV)
    两种镧系元素硒酸锡酸酯(IV)[Ln 2(tepa)2(μ-OH)2 Sn 2 Se 6 ] Ln = Y(Ia),Pr(Ib),Dy(Ic),Er(Id),Tm (即); TEPA四亚乙基五=}和[LN 2(TEPA)2(μ 2 -OH)2氯2 ] 2 [Sn的4硒10 ]·4H 2 -O Ln为Y(IIA),镝(IIB),铒(的IIc) , Tm值 (IId)}已经在相同的溶剂热条件下合成并进行了结构表征。I型(Ia,Ib,Ic,Id和Ie)显示一维中性链[Ln 2(tepa)2(μ-OH)2 Sn 2 Se 6 ] n,而II型(IIa,IIb,IIc和IId)包含离散的金刚烷样[Sn 4 Se 10 ] 4−离子和双核镧系元素[Ln 2(tepa)2(μ-OH)2 Cl 2 ] 2+离子作为抗衡离子。尽管溶剂热合成方法可能导致形成各种过渡金属硫属元素金属化物,但这种相同的实验条
  • Studies on solid state redox reaction of iron(III) oxalate by gas chromatography
    作者:Yuan Jinhua、Xin Xinquan、Dai Anbang、Chang Yuchang
    DOI:10.1016/0040-6031(88)87249-6
    日期:1988.4
    Abstract The solid state redox reaction of iron (III) oxalate with sodium nitrate and tin(II) chloride was investigated in hydrogen atmosphere and helium atmosphere by use of a non-isothermal technique. The evolved gases (EG) formed during the reaction were directly detected by gas chromatography, and the solid products were also identified by XRD, Mossbauer spectra and IR. The results show that the
    摘要 采用非等温技术研究了草酸铁(III)与硝酸钠和氯化锡(II)在氢气和氦气中的固态氧化还原反应。反应过程中生成的气体(EG)直接用气相色谱法检测,固体产物也用XRD、Mossbauer光谱和IR进行鉴定。结果表明,固态氧化还原反应可以完成,因为电子转移比沿着反应物边界的质量扩散容易得多。氧化还原反应过程中结晶水和配位水的释放也有利于反应的完成。还讨论了固态反应的机理。
查看更多