Copper-catalyzed tandem aryl–halogen hydroxylation and CH<sub>2</sub>Cl<sub>2</sub>-based N,O-acetalization toward the synthesis of 2,3-dihydrobenzoxazinones
作者:Xuwen Chen、Wenyan Hao、Yunyun Liu
DOI:10.1039/c7ob00625j
日期:——
The concise synthesis of 2,3-dihydro-4H-benzo[e][1,3]oxazin-4-ones has been accomplished by copper-catalyzedtandemreactions of o-halobenzamides, LiOH and dichloromethane. The aryl–halogen bond hydroxylation and subsequent N,O-acetalization on CH2Cl2 are enabled under catalytic conditions which allows the generation of C(sp2)–O, C(sp3)–O and C(sp3)–N bonds to give the target products.
Predictably Selective (sp<sup>3</sup>)C–O Bond Formation through Copper Catalyzed Dehydrogenative Coupling: Facile Synthesis of Dihydro-oxazinone Derivatives
作者:Atanu Modak、Uttam Dutta、Rajesh Kancherla、Soham Maity、Mohitosh Bhadra、Shaikh M. Mobin、Debabrata Maiti
DOI:10.1021/ol500670h
日期:2014.5.16
An intramolecular dehydrogenative (sp3)C–O bond formation in salicylamides can be initiated by an active Cu/O2 species to generate pharamaceutically relevant dihydro-oxazinones. Experimental findings suggest that stereoelectronic parameters in both coupling partners are controlling factors for site selectivity in bond formation. Mechanistic investigations including isotope labeling, kinetic studies
水杨酰胺中分子内脱氢(sp 3)C–O键的形成可以由活性Cu / O 2物种引发,以生成药物相关的二氢-恶嗪酮。实验结果表明,两个偶合伙伴中的立体电子参数是键形成中位点选择性的控制因素。包括同位素标记在内的机械研究,动力学研究有助于提出催化循环。该方法为正在研究的新药CX-614的合成提供了便利,该新药具有寻找帕金森氏病和阿尔茨海默氏病治疗的潜力。
Organic compounds
申请人:Damon Edson Robert
公开号:US20070004704A1
公开(公告)日:2007-01-04
Compounds of the formula
provide pharmacological agents which bind to Peroxisome Proliferator-Activated Receptors (PPARs). Accordingly, the compounds of the present invention are useful for the treatment of conditions mediated by the PPAR receptor activity in mammals. Such conditions include dyslipidemia, hyperlipidemia, hypercholesteremia, atherosclerosis, hypertriglyceridemia, heart failure, myocardial infarction, vascular diseases, cardiovascular diseases, hypertension, obesity, inflammation, arthritis, cancer, Alzheimer's disease, skin disorders, respiratory diseases, ophthalmic disorders, inflammatory bowel diseases (IBDs), ulcerative colitis and Crohn's disease. The compounds of the present invention are particularly useful in mammals as hypoglycemic agents for the treatment and prevention of conditions in which impaired glucose tolerance, hyperglycemia and insulin resistance are implicated, such as type-1 and type-2 diabetes, and Syndrome X.
Compounds of the formula
provide pharmacological agents which are potent agonists of Peroxisome Proliferator-Activated Receptors (PPARs). Accordingly, the compounds of the instant invention are useful for the treatment of conditions mediated by the PPAR receptor activity in mammals. Such conditions include dyslipidemia, hyperlipidemia, hypercholesteremia, atherosclerosis, hypertriglyceridemia, heart failure, myocardial infarction, vascular diseases, cardiovascular diseases, hypertension, obesity, inflammation, arthritis, cancer, Alzheimer's disease, skin disorders, respiratory diseases, ophthalmic disorders, inflammatory bowel diseases, ulcerative colitis and Crohn's disease. The compounds of the present invention are particularly useful in mammals as hypoglycemic agents for the treatment and prevention of conditions in which impaired glucose tolerance, hyperglycemia and insulin resistance are implicated, such as type-1 and type-2 diabetes, and Syndrome X. Preferred are the compounds of the invention which are dual agonists of PPARα and PPARγ receptors.