HANSEN H.; HUENIG S.; KISHI K., CHEM. BER., 1979, 112, NO 2, 445-461
摘要:
DOI:
作为产物:
描述:
叔-丁基叠氮化物 、 alkaline earth salt of/the/ methylsulfuric acid 以20.4%的产率得到1-tert-Butyltriazoline
参考文献:
名称:
Acid-catalyzed decomposition of 1-alkyltriazolines: a mechanistic study
摘要:
1-Alkyltriazolines are five-membered cyclic triazenes containing the unusual Z-configuration for the triazene moiety. The hydrolytic decomposition of these compounds in aqueous or mixed acetonitrile-aqueous buffers leads predominantly to the formation of the corresponding 1-alkylaziridines and lesser amounts of 2-(alkylamino)ethanols, alkylamines, and acetaldehyde. The latter two products presumably result from hydrolysis of a rearrangement product, N-ethylidenealkylamine. Neither the nature of the 1-alkyl group nor the pH of the medium greatly influences the product distribution, although decomposition in purely aqueous buffers slightly reduces the aziridine yields. The rate of hydrolysis of 1-alkyltriazolines is about twice as fast as that of the analogous acyclic 1,3,3-trialkyltriazenes and varies in the order tert-butyl > isopropyl > ethyl > butyl > methyl > propyl > benzyl. The mechanism of the decomposition is specific acid-catalyzed (A1) involving rapid reversible protonation followed by rate-limiting formation of a 2-(alkylamino)ethyldiazonium ion. The slopes of the log k(obs) versus pH plots are near -1.0. The solvent deuterium isotope effect, k(H2O)/k(D2O), is in all cases <1.0 and ranges from 0.58 for 1-methyltriazoline to 0.86 for 1-benzyltriazoline. The rate of decomposition shows no significant dependence on the concentration of the buffer acid. The proposed mechanism involves rate-limiting formation of a 2-(alkylamino)ethyldiazonium ion, which is then partitioned among several competing product formation pathways. 1-Alkyltriazolines are potent direct-acting mutagens in the alkylation-sensitive TA 1535 strain of Salmonella typhimurium. A clear, dose-dependent mutagenicity is observed. At the highest dose level, various 1-alkyltriazolines have activities roughly equivalent to that of the potent methylating agent, 1,3-dimethyltriazene. At low levels of substrate, 1-alkyltriazolines are significantly more active than 1,3-dimethyltriazene, with mutagenicity following the order benzyl > methyl > ethyl.
SUBSTITUTED AMINO TRIAZOLES USEFUL AS ACIDIC MAMMALIAN CHITINASE INHIBITORS
申请人:OncoArendi Therapeutics Sp z o.o.
公开号:US20160176843A1
公开(公告)日:2016-06-23
Disclosed are amino triazole compounds substituted by a carboxylate functional group or an bioisosteric polar functional group. Compounds having the carboxylate moiety or carboxylate bioisostere inhibit acidic mammalian chitinase. Also provided are methods of using the compounds to treat asthma reactions caused by allergens.
Acid-catalyzed decomposition of 1-alkyltriazolines: a mechanistic study
作者:Richard H. Smith、Brian D. Wladkowski、Jesse E. Taylor、Erin J. Thompson、Brunon Pruski、John R. Klose、A. W. Andrews、Christopher J. Michejda
DOI:10.1021/jo00060a027
日期:1993.4
1-Alkyltriazolines are five-membered cyclic triazenes containing the unusual Z-configuration for the triazene moiety. The hydrolytic decomposition of these compounds in aqueous or mixed acetonitrile-aqueous buffers leads predominantly to the formation of the corresponding 1-alkylaziridines and lesser amounts of 2-(alkylamino)ethanols, alkylamines, and acetaldehyde. The latter two products presumably result from hydrolysis of a rearrangement product, N-ethylidenealkylamine. Neither the nature of the 1-alkyl group nor the pH of the medium greatly influences the product distribution, although decomposition in purely aqueous buffers slightly reduces the aziridine yields. The rate of hydrolysis of 1-alkyltriazolines is about twice as fast as that of the analogous acyclic 1,3,3-trialkyltriazenes and varies in the order tert-butyl > isopropyl > ethyl > butyl > methyl > propyl > benzyl. The mechanism of the decomposition is specific acid-catalyzed (A1) involving rapid reversible protonation followed by rate-limiting formation of a 2-(alkylamino)ethyldiazonium ion. The slopes of the log k(obs) versus pH plots are near -1.0. The solvent deuterium isotope effect, k(H2O)/k(D2O), is in all cases <1.0 and ranges from 0.58 for 1-methyltriazoline to 0.86 for 1-benzyltriazoline. The rate of decomposition shows no significant dependence on the concentration of the buffer acid. The proposed mechanism involves rate-limiting formation of a 2-(alkylamino)ethyldiazonium ion, which is then partitioned among several competing product formation pathways. 1-Alkyltriazolines are potent direct-acting mutagens in the alkylation-sensitive TA 1535 strain of Salmonella typhimurium. A clear, dose-dependent mutagenicity is observed. At the highest dose level, various 1-alkyltriazolines have activities roughly equivalent to that of the potent methylating agent, 1,3-dimethyltriazene. At low levels of substrate, 1-alkyltriazolines are significantly more active than 1,3-dimethyltriazene, with mutagenicity following the order benzyl > methyl > ethyl.
HANSEN H.; HUENIG S.; KISHI K., CHEM. BER., 1979, 112, NO 2, 445-461