摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

2-(4-Chlorobutyl)-1,3-benzoxazole | 1039889-20-7

中文名称
——
中文别名
——
英文名称
2-(4-Chlorobutyl)-1,3-benzoxazole
英文别名
——
2-(4-Chlorobutyl)-1,3-benzoxazole化学式
CAS
1039889-20-7
化学式
C11H12ClNO
mdl
——
分子量
209.675
InChiKey
CHQKWPWRGHRRKN-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    3.4
  • 重原子数:
    14
  • 可旋转键数:
    4
  • 环数:
    2.0
  • sp3杂化的碳原子比例:
    0.36
  • 拓扑面积:
    26
  • 氢给体数:
    0
  • 氢受体数:
    2

上下游信息

  • 下游产品
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    2-(4-Chlorobutyl)-1,3-benzoxazole5-氯-1,3-二氢-1-(4-哌啶基)-2H-苯并咪唑-2-酮potassium carbonate 作用下, 以 乙腈 为溶剂, 以34%的产率得到1-(1-(4-(benzo[d]oxazol-2-yl)butyl)piperidin-4-yl)-5-chloro-1H-benzo[d]imidazol-2(3H)-one
    参考文献:
    名称:
    Development of CNS multi-receptor ligands: Modification of known D2 pharmacophores
    摘要:
    Several known D-2 pharmacophores have been explored as templates for identifying ligands with multiple binding affinities at dopamine and serotonin receptors considered as clinically relevant receptors in the treatment of neuropsychiatric diseases. This approach has resulted in the identification of ligands that target multiple CNS receptors while avoiding others associated with deleterious effects. In particular, compounds 11, 15 and 22 may have potential for further development as antipsychotic agents as they favorably interact with the clinically relevant receptors including D2R, 5-HT1AR, and 5-HT7R. We have also identified the pair of compounds 11 and 10 as high affinity D2R ligands with and without SERT binding affinities, respectively. These differential binding profiles endow the pair with the potential for evaluating SERT contributions to antipsychotic drug activity in animal behavioral models. In addition, compound 11 has no significant affinity for 5-HT2CR and binds only moderately to the H1R, suggesting it may not induce weight gain or sedation when used clinically. Taken together, compound 11 displays an interesting pharmacological profile that necessitates the evaluation of its functional and in vivo effects in animal models which are currently ongoing. Published by Elsevier Ltd.
    DOI:
    10.1016/j.bmc.2016.06.011
  • 作为产物:
    描述:
    5-chloro-N-(2-hydroxyphenyl)pentanamide 在 polyphosphoric acid 作用下, 生成 2-(4-Chlorobutyl)-1,3-benzoxazole
    参考文献:
    名称:
    Identification of a new selective dopamine D4 receptor ligand
    摘要:
    The dopamine D-4 receptor has been shown to play key roles in certain CNS pathologies including addiction to cigarette smoking. Thus, selective D-4 ligands may be useful in treating some of these conditions. Previous studies in our laboratory have indicated that the piperazine analog of haloperidol exhibits selective and increased affinity to the DAD(4) receptor subtype, in comparison to its piperidine analog. This led to further exploration of the piperazine moiety to identify new agents that are selective at the D-4 receptor. Compound 27 (KiD4 = 0.84 nM) was the most potent of the compounds tested. However, it only had moderate selectivity for the D-4 receptor. Compound 28 (KiD4 = 3.9 nM) while not as potent, was more discriminatory for the D-4 receptor subtype. In fact, compound 28 has little or no binding affinity to any of the other four DA receptor subtypes. In addition, of the 23 CNS receptors evaluated, only two, 5HT(1A)R and 5HT(2B)R, have binding affinity constants better than 100 nM (K-i < 100 nM). Compound 28 is a potentially useful D-4-selective ligand for probing disease treatments involving the D-4 receptor, such as assisting smoking cessation, reversing cognitive deficits in schizophrenia and treating erectile dysfunction. Thus, further optimization, functional characterization and evaluation in animal models may be warranted. Published by Elsevier Ltd.
    DOI:
    10.1016/j.bmc.2014.04.026
点击查看最新优质反应信息

文献信息

  • Development of CNS multi-receptor ligands: Modification of known D2 pharmacophores
    作者:Jagan R. Etukala、Xue Y. Zhu、Suresh V.K. Eyunni、Edem K. Onyameh、Edward Ofori、Barbara A. Bricker、Hye J. Kang、Xi-Ping Huang、Bryan L. Roth、Seth Y. Ablordeppey
    DOI:10.1016/j.bmc.2016.06.011
    日期:2016.8
    Several known D-2 pharmacophores have been explored as templates for identifying ligands with multiple binding affinities at dopamine and serotonin receptors considered as clinically relevant receptors in the treatment of neuropsychiatric diseases. This approach has resulted in the identification of ligands that target multiple CNS receptors while avoiding others associated with deleterious effects. In particular, compounds 11, 15 and 22 may have potential for further development as antipsychotic agents as they favorably interact with the clinically relevant receptors including D2R, 5-HT1AR, and 5-HT7R. We have also identified the pair of compounds 11 and 10 as high affinity D2R ligands with and without SERT binding affinities, respectively. These differential binding profiles endow the pair with the potential for evaluating SERT contributions to antipsychotic drug activity in animal behavioral models. In addition, compound 11 has no significant affinity for 5-HT2CR and binds only moderately to the H1R, suggesting it may not induce weight gain or sedation when used clinically. Taken together, compound 11 displays an interesting pharmacological profile that necessitates the evaluation of its functional and in vivo effects in animal models which are currently ongoing. Published by Elsevier Ltd.
  • Identification of a new selective dopamine D4 receptor ligand
    作者:Dinithia Sampson、Xue Y. Zhu、Suresh V.K. Eyunni、Jagan R. Etukala、Edward Ofori、Barbara Bricker、Nazarius S. Lamango、Vincent Setola、Bryan L. Roth、Seth Y. Ablordeppey
    DOI:10.1016/j.bmc.2014.04.026
    日期:2014.6
    The dopamine D-4 receptor has been shown to play key roles in certain CNS pathologies including addiction to cigarette smoking. Thus, selective D-4 ligands may be useful in treating some of these conditions. Previous studies in our laboratory have indicated that the piperazine analog of haloperidol exhibits selective and increased affinity to the DAD(4) receptor subtype, in comparison to its piperidine analog. This led to further exploration of the piperazine moiety to identify new agents that are selective at the D-4 receptor. Compound 27 (KiD4 = 0.84 nM) was the most potent of the compounds tested. However, it only had moderate selectivity for the D-4 receptor. Compound 28 (KiD4 = 3.9 nM) while not as potent, was more discriminatory for the D-4 receptor subtype. In fact, compound 28 has little or no binding affinity to any of the other four DA receptor subtypes. In addition, of the 23 CNS receptors evaluated, only two, 5HT(1A)R and 5HT(2B)R, have binding affinity constants better than 100 nM (K-i < 100 nM). Compound 28 is a potentially useful D-4-selective ligand for probing disease treatments involving the D-4 receptor, such as assisting smoking cessation, reversing cognitive deficits in schizophrenia and treating erectile dysfunction. Thus, further optimization, functional characterization and evaluation in animal models may be warranted. Published by Elsevier Ltd.
查看更多

同类化合物

(N-{4-[(6-溴-2-氧代-1,3-苯并恶唑-3(2H)-基)磺酰基]苯基}乙酰胺) 钙离子载体A23187半镁盐 荧光增白剂EBF 苯并恶唑胺 苯并恶唑的取代物 苯并恶唑甲磺酰氯 苯并恶唑基-2-甲酰基-S-乙基-异缩氨基硫脲 苯并恶唑-2-羧酸酰肼 苯并恶唑-2-磺酸 苯并恶唑-2-甲酸 苯并恶唑-2-甲磺酸钠 苯并恶唑-2-乙酸 苯并恶唑 苯并噁唑-5-甲酸 苯并噁唑-2-羧酸乙酯 苯并噁唑-2-甲醛 苯并噁唑,4,7-二氯-2-(氯甲基)- 苯并噁唑,2-叠氮- 苯并噁唑,2-(氯甲基)-4,7-二氟- 苯并[d]恶唑-7-甲酸甲酯 苯并[d]恶唑-5-硼酸频哪醇酯 苯并[d]噁唑-6-甲醛 苯并[d]噁唑-2-羧酸甲酯 苯并[d]噁唑-2-甲醇 苯并[D]恶唑-7-胺 苯并[D]噁唑-4-基氨基甲酸叔丁酯 苯并[D]噁唑-2-羧酸钾 苯并-13C6-噁唑 离子载体 碘化二氢2-[3-(5,6-二氯-1,3-二乙基-1,3--2H-苯并咪唑-2-亚基)丙-1-烯基]-3-乙基-5-苯基苯并噁唑正离子 硫代偏糖醛 甲酰胺,N-乙基-N-[6-[(3-甲酰基苯氧基)甲基]-2-苯并噁唑基]- 甲酰胺,N-[6-(溴甲基)-2-苯并噁唑基]-N-乙基- 甲基硫酸1-甲基-8-[(甲基氨基甲酰)氧代]喹啉正离子 甲基6-氨基-1,3-苯并恶唑-2-羧酸酯 甲基2-氨基-1,3-苯并恶唑-5-羧酸酯 甲基1,3-苯并恶唑-2-基乙酸酯 甲基-2-乙基-1,3-苯并唑-5-羧酸乙酯 甲基-1,3-苯并唑-5-羧酸乙酯 环戊二烯并[e][1,3]恶嗪-5,6-二胺 环戊二烯并[d][1,3]恶嗪-6,7-二胺 溴氯唑酮 溴化二氢2-[3-[1-[4-[(乙酰氨基)磺基基]丁基]-5,6-二氯-3-乙基-1,3--2H-苯并咪唑-2-亚基]丙-1-烯基]-3-乙基-5-苯基苯并噁唑正离子 氰基二硫代亚氨酸(6-氯-2-氧代-3(2H)-苯并恶唑基)甲基甲基酯 氰基-二硫代亚氨酸甲基(2-氧代-3(2H)-苯并恶唑基)甲基酯 氯唑沙宗-2-13C-3-15N-羟基-18O 氯唑沙宗 氯化3-乙基-2-[2-(1-乙基-2,5-二甲基-1H-吡咯-3-基)乙烯基]苯并恶唑翁盐 昂唑司特 拂来星-d2