Biocatalysed synthesis of β-O-glucosides from 9-fluorenon-2-carbohydroxyesters. Part 3: IFN-inducing and anti-HSV-2 properties
摘要:
In pursuing research on the antiviral, interferon (IFN)-inducing tilorone congeners, a new series of fluoren-carboxyhydroxyesters has been prepared and biologically explored. These esters have subsequently been used as sugar acceptors in the enzymatic transglycosylation reaction using the 'retaining' P-glycosidase from the archaeon Sulfolobus solfataricus (Ss beta-Gly).Both aglycones (1-6) and corresponding beta-glucosides (beta-glu 1-beta-glu 6) have been screened for cytotoxicity, interferon-stimulating and antiviral properties against HSV-2.It was found that the addition of compounds beta-glu 5, beta-glu 6 and beta-glu 4 to HSV-2 infected U937 cells downregulates viral replication and triggers cells to release IFN-alpha/beta. Taken together, the results showed improved pharmacological profiles as a consequence of glycosylation. A molecular modelling study carried out on this series of compounds completed the structural characterisation of the novel compounds. (c) 2005 Elsevier Ltd. All rights reserved.
Biocatalysed synthesis of β-O-glucosides from 9-fluorenon-2-carbohydroxyesters. Part 3: IFN-inducing and anti-HSV-2 properties
摘要:
In pursuing research on the antiviral, interferon (IFN)-inducing tilorone congeners, a new series of fluoren-carboxyhydroxyesters has been prepared and biologically explored. These esters have subsequently been used as sugar acceptors in the enzymatic transglycosylation reaction using the 'retaining' P-glycosidase from the archaeon Sulfolobus solfataricus (Ss beta-Gly).Both aglycones (1-6) and corresponding beta-glucosides (beta-glu 1-beta-glu 6) have been screened for cytotoxicity, interferon-stimulating and antiviral properties against HSV-2.It was found that the addition of compounds beta-glu 5, beta-glu 6 and beta-glu 4 to HSV-2 infected U937 cells downregulates viral replication and triggers cells to release IFN-alpha/beta. Taken together, the results showed improved pharmacological profiles as a consequence of glycosylation. A molecular modelling study carried out on this series of compounds completed the structural characterisation of the novel compounds. (c) 2005 Elsevier Ltd. All rights reserved.