late-stage oxygenation of sulfur-containing complex molecules with ground-stateoxygen under ambient conditions. The high oxidation potential of the active uranyl cation (UO2 2+ ) enabled the efficient synthesis of sulfones. The ligand-to-metal charge transfer process (LMCT) from O 2p to U 5f within the O=U=O group, which generates a UV center and an oxygen radical, is assumed to be affected by the solvent
氧合是合成中的基本转变。在这里,我们描述了在环境条件下用基态氧对含硫配合物分子的选择性后期氧合。活性铀酰阳离子(UO2 2+)的高氧化势使砜的有效合成成为可能。假设O = U = O组中从O 2p到U 5f的配体到金属的电荷转移过程(LMCT)会产生UV中心和一个氧自由基,并且受溶剂和添加剂的影响,并且可以调整以促进选择性硫氧化。这种可调策略可以通过后期氧合以原子和步长高效的方式分批合成32种药物和类似物。
The invention is related to phosphorus substituted anti-inflammatory compounds, compositions containing such compounds, and therapeutic methods that include the administration of such compounds, as well as to processes and intermediates useful for preparing such compounds.
Non-steroidal anti-inflammatory drugs (NSAIDs) achieve their anti-inflammatory effect by inhibiting cyclooxygenase activity. We previously suggested that in addition to cyclooxygenase-inhibition at the gastric mucosa, NSAID-induced gastric mucosal cell death is required for the formation of NSAID-induced gastric lesions in vivo. We showed that celecoxib exhibited the most potent membrane permeabilizing activity among the NSAIDs tested. In contrast, we have found that the NSAID rofecoxib has very weak membrane permeabilizing activity. To understand the membrane permeabilizing activity of coxibs in terms of their structure-activity relationship, we separated the structures of celecoxib and rofecoxib into three parts, synthesized hybrid compounds by substitution of each of the parts, and examined the membrane permeabilizing activities of these hybrids. The results suggest that the sulfonamidophenyl subgroup of celecoxib or the methanesulfonylphenyl subgroup of rofecoxib is important for their potent or weak membrane permeabilizing activity, respectively. These findings provide important information for design and synthesis of new coxibs with lower membrane permeabilizing activity. (C) 2014 Published by Elsevier Ltd.