摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

5-hydroxyconiferyl alcohol | 1782-47-4

中文名称
——
中文别名
——
英文名称
5-hydroxyconiferyl alcohol
英文别名
3-Methoxy-kaffeealkohol;5-(3-Hydroxyprop-1-enyl)-3-methoxybenzene-1,2-diol
5-hydroxyconiferyl alcohol化学式
CAS
1782-47-4
化学式
C10H12O4
mdl
——
分子量
196.203
InChiKey
NPNAJGCZQBQWQZ-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    0.9
  • 重原子数:
    14
  • 可旋转键数:
    3
  • 环数:
    1.0
  • sp3杂化的碳原子比例:
    0.2
  • 拓扑面积:
    69.9
  • 氢给体数:
    3
  • 氢受体数:
    4

SDS

SDS:cab391cf14b4fe374a7c07ca2e73dbcc
查看

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量
  • 下游产品
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    5-hydroxyconiferyl alcohol 在 Larrea tridentata cinnamyl alcohol acyltransferase-1 、 propenylphenol synthase from Larrea tridentata 、 还原型辅酶Ⅰ 作用下, 以 aq. buffer 为溶剂, 反应 0.5h, 生成 5-Hydroxyeugenol
    参考文献:
    名称:
    Allyl/propenyl phenol synthases from the creosote bush and engineering production of specialty/commodity chemicals, eugenol/isoeugenol, in Escherichia coli
    摘要:
    The creosote bush (Larrea tridentata) harbors members of the monolignol acyltransferase, allylphenol synthase, and propenylphenol synthase gene families, whose products together are able to catalyze distinct regiospecific conversions of various monolignols into their corresponding allyl- and propenyl-phenols, respectively. In this study, co-expression of a monolignol acyltransferase with either substrate versatile allylphenol or propenylphenol synthases in Escherichia coli established that various monolignol substrates were efficiently converted into their corresponding allyl/propenyl phenols, as well as providing proof of concept for efficacious conversion in a bacterial platform. This capability thus potentially provides an alternate source to these important plant phytochemicals, whether for flavor/fragrance and fine chemicals, or ultimately as commodities, e.g., for renewable energy or other intermediate chemical purposes. Previous reports had indicated that specific and highly conserved amino acid residues 84 (Phe or Val) and 87 (Ile or Tyr) of two highly homologous allyl/propenyl phenol synthases (circa 96% identity) from a Clarkia species mainly dictate their distinct regiospecific catalyzed conversions to afford either allyior propenyl-phenols, respectively. However, several other allyl/propenyl phenol synthase homologs isolated by us have established that the two corresponding amino acid 84 and 87 residues are not, in fact, conserved. (C) 2013 Elsevier Inc. All rights reserved.
    DOI:
    10.1016/j.abb.2013.10.019
  • 作为产物:
    描述:
    反式-5-羟基阿魏酸 在 Escherichia coli BL21-Gold(DE3) lacIQ1 pALXtreme-tal-4cl-ccr-cad 作用下, 反应 17.0h, 生成 5-hydroxyconiferyl alcohol
    参考文献:
    名称:
    大肠杆菌天然和非天然单酚的微生物生产。
    摘要:
    苯丙类和苯丙类衍生的植物多酚在食品和制药工业中有许多应用。近年来,已经对几种微生物平台生物进行了工程改造以生产此类化合物。然而,在大多数情况下,微生物(多)苯酚的生产是受自然界启发的,因此迄今为止,主要生产的是天然存在的化合物。在这里,我们利用了参与苯丙氨酸合成的酶的混杂性,并利用了带有合成单木酚途径的工程化大肠杆菌菌株的多功能性,将添加的天然和非天然苯丙酸转化为其相应的单木酚。
    DOI:
    10.1002/cbic.201800673
点击查看最新优质反应信息

文献信息

  • Insights into lignin primary structure and deconstruction from Arabidopsis thaliana COMT (caffeic acid O-methyl transferase) mutant Atomt1
    作者:Syed G. A. Moinuddin、Michaël Jourdes、Dhrubojyoti D. Laskar、Chanyoung Ki、Claudia L. Cardenas、Kye-Won Kim、Dianzhong Zhang、Laurence B. Davin、Norman G. Lewis
    DOI:10.1039/c004817h
    日期:——
    The Arabidopsis mutant Atomt1 lignin differs from native lignin in wild type plants, in terms of sinapyl (S) alcohol-derived substructures in fiber cell walls being substituted by 5-hydroxyconiferyl alcohol (5OHG)-derived moieties. During programmed lignin assembly, these engender formation of benzodioxane substructures due to intramolecular cyclization of their quinone methides that are transiently formed following 8-O-4′ radical-radical coupling. Thioacidolytic cleavage of the 8-O-4′ inter-unit linkages in the Atomt1 mutant, relative to the wild type, indicated that cleavable sinapyl (S) and coniferyl (G) alcohol-derived monomeric moieties were stoichiometrically reduced by a circa 2 : 1 ratio. Additionally, lignin degradative analysis resulted in release of a 5OHG–5OHG–G trimer from the Atomt1 mutant, which then underwent further cleavage. Significantly, the trimeric moiety released provides new insight into lignin primary structure: during polymer assembly, the first 5OHG moiety is linked via a C8–O–X inter-unit linkage, whereas subsequent addition of monomers apparently involves sequential addition of 5OHG and G moieties to the growing chain in a 2 : 1 overall stoichiometry. This quantification data thus provides further insight into how inter-unit linkage frequencies in native lignins are apparently conserved (or near conserved) during assembly in both instances, as well as providing additional impetus to resolve how the overall question of lignin macromolecular assembly is controlled in terms of both type of monomer addition and primary sequence.
    拟南芥突变体 Atomt1 木质素与野生型植物中的原生木质素不同,纤维细胞壁中由 sinapyl (S) 醇衍生的亚结构被 5-hydroxyconiferyl 醇 (5OHG) 衍生的分子取代。在木质素的程序化组装过程中,由于 8-O-4′ 自由基-自由基偶联后瞬时形成的醌基甲烷的分子内环化作用,这些醌基甲烷会形成苯并二恶烷亚结构。与野生型相比,Atomt1 突变体中 8-O-4′ 单元间连接的硫代酸裂解表明,可裂解的桧醇(S)和松柏醇(G)衍生的单体分子以约 2 :1 的比例减少。此外,木质素降解分析还导致 Atomt1 突变体释放出 5OHG-5OHG-G 三聚体,然后进一步裂解。值得注意的是,释放出的三聚体提供了对木质素一级结构的新认识:在聚合物组装过程中,第一个 5OHG 分子通过 C8-O-X 单元间连接,而随后单体的添加显然涉及 5OHG 和 G 分子以 2 :1 的总比例。因此,这些定量数据让我们进一步了解了在这两种情况下,原生木质素中的单元间连接频率是如何在组装过程中保持不变(或接近不变)的,同时也为解决木质素大分子组装的整体问题提供了更多动力,即单体添加类型和主序是如何受控的。
  • Allyl/propenyl phenol synthases from the creosote bush and engineering production of specialty/commodity chemicals, eugenol/isoeugenol, in Escherichia coli
    作者:Sung-Jin Kim、Daniel G. Vassão、Syed G.A. Moinuddin、Diana L. Bedgar、Laurence B. Davin、Norman G. Lewis
    DOI:10.1016/j.abb.2013.10.019
    日期:2014.1
    The creosote bush (Larrea tridentata) harbors members of the monolignol acyltransferase, allylphenol synthase, and propenylphenol synthase gene families, whose products together are able to catalyze distinct regiospecific conversions of various monolignols into their corresponding allyl- and propenyl-phenols, respectively. In this study, co-expression of a monolignol acyltransferase with either substrate versatile allylphenol or propenylphenol synthases in Escherichia coli established that various monolignol substrates were efficiently converted into their corresponding allyl/propenyl phenols, as well as providing proof of concept for efficacious conversion in a bacterial platform. This capability thus potentially provides an alternate source to these important plant phytochemicals, whether for flavor/fragrance and fine chemicals, or ultimately as commodities, e.g., for renewable energy or other intermediate chemical purposes. Previous reports had indicated that specific and highly conserved amino acid residues 84 (Phe or Val) and 87 (Ile or Tyr) of two highly homologous allyl/propenyl phenol synthases (circa 96% identity) from a Clarkia species mainly dictate their distinct regiospecific catalyzed conversions to afford either allyior propenyl-phenols, respectively. However, several other allyl/propenyl phenol synthase homologs isolated by us have established that the two corresponding amino acid 84 and 87 residues are not, in fact, conserved. (C) 2013 Elsevier Inc. All rights reserved.
  • Microbial Production of Natural and Unnatural Monolignols with <i>Escherichia coli</i>
    作者:Jennifer Aschenbrenner、Patrick Marx、Jörg Pietruszka、Jan Marienhagen
    DOI:10.1002/cbic.201800673
    日期:2019.4
    production is inspired by nature, so naturally occurring compounds have predominantly been produced to date. Here we have taken advantage of the promiscuity of the enzymes involved in phenylpropanoid synthesis and exploited the versatility of an engineered Escherichia coli strain harboring a synthetic monolignol pathway to convert supplemented natural and unnatural phenylpropenoic acids into their corresponding
    苯丙类和苯丙类衍生的植物多酚在食品和制药工业中有许多应用。近年来,已经对几种微生物平台生物进行了工程改造以生产此类化合物。然而,在大多数情况下,微生物(多)苯酚的生产是受自然界启发的,因此迄今为止,主要生产的是天然存在的化合物。在这里,我们利用了参与苯丙氨酸合成的酶的混杂性,并利用了带有合成单木酚途径的工程化大肠杆菌菌株的多功能性,将添加的天然和非天然苯丙酸转化为其相应的单木酚。
查看更多