Hydride, Hydrogen, Proton, and Electron Affinities of Imines and Their Reaction Intermediates in Acetonitrile and Construction of Thermodynamic Characteristic Graphs (TCGs) of Imines as a “Molecule ID Card”
摘要:
A series of 61 imines with various typical structures were synthesized, and the thermodynamic affinities (defined as enthalpy changes or redox potentials in this work) of the imines to abstract hydride anions, hydrogen atoms, and electrons, the thermodynamic affinities of the radical anions of the imines to abstract hydrogen atoms and protons, and the thermodynamic affinities of the hydrogen adducts of the imines to abstract electrons in acetonitrile were determined by using titration calorimetry and electrochemical methods. The pure heterolytic and homolytic dissociation energies of the C = N pi-bond in the imines were estimated. The polarity of the C = N double bond in the imines was examined using a linear free-energy relationship. The idea of a thermodynamic characteristic graph (TCG) of imines as an efficient "Molecule ID Card" was introduced. The TCG can be used to quantitatively diagnose and predict the characteristic chemical properties of imines and their various reaction intermediates as well as the reduction mechanism of the imines. The information disclosed in this work could not only supply a gap of thermodynamics for the chemistry of imines but also strongly promote the fast development of the applications of imines.
Chemoselective Reductive Amination of Aldehydes and Ketones by Dibutylchlorotin Hydride-HMPA Complex
作者:Toshihiro Suwa、Erika Sugiyama、Ikuya Shibata、Akio Baba
DOI:10.1055/s-2000-6273
日期:——
Reductive amination of various aldehydes and ketones has been performed effectively by pentacoordinate chloro-substituted tin hydride complex, Bu2SnClH-HMPA. The tin reagent worked particularly well for the case using weakly basic aromatic amines as starting substrates. Stoichiometric amounts of a substrate and a reducingagent were adequate for the reaction. The Sn-Cl bond in the complex plays an
Aldehydes and ketones were reductively aminated by a one‐pot procedure using a recyclable iron‐based Lewis catalyst, Aquivion‐Fe, to promote imine formation, and NaBH4 as reductant in cyclopentyl methyl ether and methanol. The developed protocol was successfully applied to the preparation of Cinacalcet, an important active pharmaceutical ingredient.
General and selective reductive amination of carbonyl compounds using a core–shell structured Co<sub>3</sub>O<sub>4</sub>/NGr@C catalyst
作者:Tobias Stemmler、Felix A. Westerhaus、Annette-Enrica Surkus、Marga-Martina Pohl、Kathrin Junge、Matthias Beller
DOI:10.1039/c4gc00536h
日期:——
The application of heterogenized non-noble metal-based catalysts in selective catalytic hydrogenation processes is still challenging. In this respect, the preparation of a well-defined cobalt-based catalyst was investigated by immobilization of the corresponding cobalt(II)-phenanthroline-chelate on Vulcan XC72R carbon powder. The formed coreâshell structured cobalt/cobalt oxide nanocomposites are encapsulated by nitrogen-enriched graphene layers. This promising cheap heterogeneous catalyst allows for an efficient domino reductive amination of carbonyl compounds with nitroarenes.
Direct and indirect reductive amination of aldehydes and ketones with solid acid-activated sodium borohydride under solvent-free conditions
作者:Byung Tae Cho、Sang Kyu Kang
DOI:10.1016/j.tet.2005.04.039
日期:2005.6
A simple and convenient procedure for reductive amination of aldehydes and ketonesusingsodiumborohydride activated by boric acid, p-toluenesulfonic acid monohydrate or benzoic acid as reducing agent under solvent-free conditions is described.